Комплектующие        27.05.2021   

Контроллер sas что. Разница между SAS и SATA

За два года изменений накопилось немного:

  • Supermicro отказывается от проприетарного "перевернутого" форм-фактора UIO для контроллеров. Подробности будут ниже.
  • LSI 2108 (SAS2 RAID с 512МБ кэша) и LSI 2008 (SAS2 HBA с опциональной поддержкой RAID) по-прежнему в строю. Продукты на этих чипах, как производства LSI, так и от OEM партнеров, достаточно хорошо отлажены и по-прежнему актуальны.
  • Появились LSI 2208 (тот же SAS2 RAID со стеком LSI MegaRAID, только с двухъядерным процессором и 1024МБ кэша) и (усовершенствованная версия LSI 2008 с более быстрым процессором и поддержкой PCI-E 3.0).

Переход от UIO к WIO

Как вы помните, платы UIO - это обычные платы PCI-E x8, у которых вся элементная база находится с обратной стороны, т.е. при установке в левый райзер оказывается сверху. Понадобился такой форм-фактор для установки плат в самый нижний слот сервера, что позволяло разместить четыре платы в левом райзере. UIO - это не только форм-фактор плат расширения, это еще и корпуса, рассчитанные на установку райзеров, сами райзеры и материнские платы специального форм-фактора, с вырезом под нижний слот расширения и слотами для установки райзеров.
У подобного решения существовало две проблемы. Во-первых, нестандартный форм-фактор плат расширения ограничивал выбор клиента, т.к. под в UIO форм-факторе существует лишь несколько контроллеров SAS, InfiniBand и Ehternet. Во-вторых - недостаточное количество линий PCI-E в слотах под райзеры - всего 36, из них на левый райзер - всего 24 линии, что явно мало для четырех плат с PCI-E x8.
Что же такое WIO? Сначала оказалось, что существует возможность размещения четырех плат в левом райзере без необходимости "переворачивания бутерброда маслом вверх", и появились райзеры под обычные платы (RSC-R2UU-A4E8+). Затем была решена проблема нехватки линий (теперь их 80) путем использования слотов с большей плотностью контактов.
UIO райзер RSC-R2UU-UA3E8+
WIO райзер RSC-R2UW-4E8

Результаты:
  • Райзеры WIO нельзя установить в материнские платы, рассчитанные на UIO (например, X8DTU-F).
  • Райзеры UIO нельзя установить в новые платы, рассчитанные на WIO.
  • Существуют райзеры под WIO (на материнской плате), имеющие слот UIO для карточек. На тот случай, если у вас остались UIO контроллеры. Они используются в платформах под Socket B2 (6027B-URF, 1027B-URF, 6017B-URF).
  • Новых контроллеров в форм-факторе UIO появляться не будет. Например, контроллер USAS2LP-H8iR на чипе LSI 2108 будет последним, LSI 2208 под UIO не будет - только обычный MD2 с PCI-E x8.

Контроллеры PCI-E

В данный момент актуальными являются три разновидности: RAID контроллеры на базе LSI 2108/2208 и HBA на базе LSI 2308. Существует еще загадочный SAS2 HBA AOC-SAS2LP-MV8 на чипе Marvel 9480, но о нем писать из-за его экзотичности. Большинство случаев применения внутренних SAS HBA - это СХД с ZFS под FreeBSD и различными разновидностями Solaris. Благодаря отсутствию проблем с поддержкой в этих ОС выбор в 100% случаев падает на LSI 2008/2308.
LSI 2108
Помимо UIO"шного AOC-USAS2LP-H8iR , который упомянут в добавились еще два контроллера:

AOC-SAS2LP-H8iR
LSI 2108, SAS2 RAID 0/1/5/6/10/50/60, 512МБ кэш, 8 внутренних портов (2 разъема SFF-8087). Является аналогом контроллера LSI 9260-8i , но произведен Supermicro, есть мелкие различия в разводке платы, цена на $40-50 ниже LSI. Поддерживаются все дополнительные опции LSI : активация , FastPath и CacheCade 2.0, батарейная защита кэша - LSIiBBU07 и LSIiBBU08 (сейчас предпочтительнее использовать BBU08, у него расширен температурный диапазон и в комплекте идет кабель для удаленного монтажа).
Несмотря на появление более производительных контроллеров на базе LSI 2208, LSI 2108 все еще остается актуальным благодаря снижению цены. Производительности с обычными HDD хватает в любых сценариях, предел по IOPS для работы с SSD - 150000, что для большинства бюджетных решений более чем достаточно.

AOC-SAS2LP-H4iR
LSI 2108, SAS2 RAID 0/1/5/6/10/50/60, 512МБ кэш, 4 внутренних + 4 внешних порта. Является аналогом контроллера LSI 9280-4i4e . Удобен для использования в экспандерных корпусах, т.к. не придется выводить выход с экспандера наружу для подключения дополнительных JBOD"ов, или в 1U корпусах на 4 диска при необходимости обеспечить возможность наращивания числа дисков. Поддерживает те же BBU и ключи активации.
LSI 2208

AOC-S2208L-H8iR
LSI 2208, SAS2 RAID 0/1/5/6/10/50/60, 1024МБ кэш, 8 внутренних портов (2 разъема SFF-8087). Является аналогом контроллера LSI 9271-8i . LSI 2208 - это дальнейшее развитие LSI 2108. Процессор стал двухъядерным, что позволило поднять предел производительности по IOPS"ам аж до 465000. Добавилась поддержка PCI-E 3.0 и увеличился до 1ГБ кэш.
Контроллер поддерживает батарейную защиту кэша BBU09 и флеш-защиту CacheVault. Supermicro поставляет их под партномерами BTR-0022L-LSI00279 и BTR-0024L-LSI00297, но у нас проще приобрести через канал продаж LSI (вторая часть партномеров - это и есть родные партномера LSI). Ключи активации MegaRAID Advanced Software Options тоже поддерживаются, партномера: AOC-SAS2-FSPT-ESW (FastPath) и AOCCHCD-PRO2-KEY (CacheCade Pro 2.0).
LSI 2308 (HBA)

AOC-S2308L-L8i и AOC-S2308L-L8e
LSI 2308, SAS2 HBA (с IR прошивкой - RAID 0/1/1E), 8 внутренних портов (2 разъема SFF-8087). Это один и тот же контроллер, поставляется с разными прошивками. AOC-S2308L-L8e - IT firmware (чистый HBA), AOC-S2308L-L8i - IR firmware (с поддержкой RAID 0/1/1E). Разница в том, что L8i может работать с IR и IT прошивками, L8e - только с IT, прошивка в IR заблокирована. Является аналогом контроллера LSI 9207-8 i . Отличия от LSI 2008: побыстрее чип (800Мгц, как следствие - поднялся лимит по IOPS до 650тыс.), появилась поддержка PCI-E 3.0. Применение: программные RAID"ы (ZFS, например), бюджетные серверы.
На базе этого чипа не будет дешевых контроллеров с поддержкой RAID-5 (iMR стек, из готовых контроллеров - LSI 9240).

Набортные контроллеры

В последних продуктах (платах X9 и платформах с ними) Supermicro обозначает наличие SAS2 контроллера от LSI цифрой "7" в партномере, цифрой "3" - чипсетный SAS (Intel C600). Вот только не делается различий между LSI 2208 и 2308, так что будьте внимательны при выборе платы.
  • Распаянный на материнских платах контроллер на базе LSI 2208 имеет ограничение - максимум 16 дисков. При добавлении 17 он просто не определится, и в логе MSM вы увидите сообщение "PD is not supported". Компенсацией за это служит существенно более низкая цена. Например, связка "X9DRHi-F + внешний контроллер LSI 9271-8i" обойдется дороже примерно на $500, чем X9DRH-7F с LSI 2008 на борту. Обойти это ограничение перепрошивкой в LSI 9271 не получится - прошивка другого SBR блока, как в случае с LSI 2108 не помогает.
  • Еще одна особенность - отсутствие поддержки модулей CacheVault, на платах банально не хватает места под специальный разъем, так что поддерживается только BBU09. Возможность установки BBU09 зависит от используемого корпуса. Например, LSI 2208 используется в блейд-серверах 7127R-S6, разъем для подключения BBU там есть, но для монтажа самого модуля нужен дополнительный крепеж MCP-640-00068-0N Battery Holder Bracket.
  • Прошивку SAS HBA (LSI 2308) придется теперь , так как в DOS на любой из плат с LSI 2308 не запускается sas2flash.exe с ошибкой "Failed to initialize PAL".

Контроллеры в Twin и FatTwin платформах

Некоторые 2U Twin 2 платформы существуют в трех вариантах, с тремя видами контроллеров. Например:
  • 2027TR-HTRF+ - чипсетный SATA
  • 2027TR-H70RF+ - LSI 2008
  • 2027TR-H71RF+ - LSI 2108
  • 2027TR-H72RF+ - LSI 2208
Подобное многообразие обеспечивается за счет того, что контроллеры размещены на специальной объединительной плате, которая подключается в спецслот на материнской плате и в дисковый бэкплейн.
BPN-ADP-SAS2-H6IR (LSI 2108)


BPN-ADP-S2208L-H6iR (LSI 2208)

BPN-ADP-SAS2-L6i (LSI 2008)

Корпуса Supermicro xxxBE16/xxxBE26

Еще одна тема, имеющая прямое отношение к контроллерам - это модернизация корпусов с . Появились разновидности с дополнительной корзиной на два 2,5" диска, расположенной на задней панели корпуса. Назначение - выделенный диск (или зеркало) под загрузку системы. Конечно, систему можно грузить, выделив небольшой том от другой дисковой группы или с дополнительных дисков, закрепленных внутри корпуса (в 846-х корпусах можно установить дополнительный крепеж для одного 3,5" или двух 2,5" дисков), но обновленные модификации гораздо удобнее:




Причем эти дополнительные диски необязательно подключать именно к чипсетному SATA контроллеру. При помощи кабеля SFF8087->4xSATA можно подключиться к основному SAS контроллеру через выход SAS экспандера.
P.S. Надеюсь, что информация была полезной. Не забывайте, что наиболее полную информацию и техническую поддержку по продукции Supermicro, LSI, Adaptec by PMC и других вендоров вы можете получить в компании True System .

На протяжении более 20 лет параллельный шинный интерфейс был самым распространенным протоколом обмена данных для большинства систем хранения цифровых данных. Но с ростом потребности в пропускной способности и гибкости систем стали очевидными недостатки двух самых распространенных технологий параллельного интерфейса: SCSI и ATA. Отсутствие совместимости между параллельными интерфейсами SCSI и ATA - разные разъемы, кабели и используемые наборы команд - повышает стоимость содержания систем, научных исследований и разработок, обучения и квалификации новых продуктов.

На сегодняшний день параллельные технологии пока еще устраивают пользователей современных корпоративных систем с точки зрения производительности, но растущие потребности в более высоких скоростях, более высокой сохранности данных при передаче, уменьшении физических размеров, а также в более широкой стандартизации ставят под сомнение способность параллельного интерфейса без излишних затрат поспевать за быстро растущей производительностью ЦПУ и скоростью накопителей на жестких дисках. Кроме того, в условиях жесткой экономии, предприятиям становится все труднее изыскивать средства на разработку и содержание разнотипных разъемов задних панелей серверных корпусов и внешних дисковых массивов, проверку на совместимость разнородных интерфейсов и инвентаризацию разнородных соединений для выполнения операций «ввод/вывод».

Использование параллельных интерфейсов также связано с рядом других проблем. Параллельная передача данных по широкому шлейфовому кабелю подвержена перекрестным наводкам, которые могут создавать дополнительные помехи и приводить к ошибкам сигнала - чтобы не угодить в эту ловушку, приходится снижать скорость сигнала или ограничивать длину кабеля, или делать и то, и другое. Терминация параллельных сигналов также связана с определенными трудностями - приходится завершать каждую линию в отдельности, обычно эту операцию выполняет последний накопитель, чтобы не допустить отражения сигнала в конце кабеля. Наконец, большие кабели и разъемы, применяемые в параллельных интерфейсах, делают эти технологии малопригодными для новых компактных вычислительных систем.

Представляем SAS и SATA

Последовательные технологии, такие как Serial ATA (SATA) и Serial Attached SCSI (SAS), позволяют преодолеть архитектурные ограничения, присущие традиционным параллельным интерфейсам. Свое название эти новые технологии получили от способа передачи сигнала, когда вся информация передается последовательно (англ. serial), единым потоком, в отличие от множественных потоков, которые используются в параллельных технологиях. Главное преимущество последовательного интерфейса заключается в том, что, когда данные передаются единым потоком, они движутся гораздо быстрее, чем при использовании параллельного интерфейса.

Последовательные технологии объединяют многие биты данных в пакеты и затем передают их по кабелю со скоростью, в 30 раз превышающей скорость параллельных интерфейсов.

SATA расширяет возможности традиционной технологии ATA, обеспечивая передачу данных между дисковыми накопителями со скоростью 1,5 Гбайт в секунду и выше. Благодаря низкой стоимости в пересчете на гигабайт емкости диска SATA будет оставаться господствующим дисковым интерфейсом в настольных ПК, серверах начального уровня и сетевых системах хранения информации, где стоимость является одним из главных соображений.

Технология SAS, преемница параллельного интерфейса SCSI, опирается на проверенную временем высокую функциональность своего предшественника и обещает значительно расширить возможности современных систем хранения данных масштаба предприятия. SAS обладает целым рядом преимуществ, не доступных традиционным решениям в области хранения данных. В частности, SAS позволяет подключать к одному порту до 16 256 устройств и обеспечивает надёжное последовательное соединение «точка-точка» со скоростью до 3 Гб/с.

Кроме того, благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel). Это очень полезная функция в тех случаях, когда требуется разместить большое количество избыточных накопителей в компактной системе, например, в низкопрофильном блэйд-сервере.

SAS улучшает адресацию и подключение накопителей благодаря аппаратным расширителям, которые позволяют подключить большое количество накопителей к одному или нескольким хост контроллерам. Каждый расширитель обеспечивает подключение до 128 физических устройств, каковыми могут являться другие хост контроллеры, другие SAS расширители или дисковые накопители. Подобная схема хорошо масштабируется и позволяет создавать топологии масштаба предприятия, с лёгкостью поддерживающие многоузловую кластеризацию для автоматического восстановления системы в случае сбоя и для равномерного распределения нагрузки.

Одно из важнейших преимуществ новой последовательной технологии заключается в том, что интерфейс SAS будет также совместим с более экономичными накопителями SATA, что позволит проектировщикам систем использовать в одной системе накопители обоих типов, не тратя дополнительные средства на поддержку двух разных интерфейсов. Таким образом интерфейс SAS, представляя собой следующее поколение технологии SCSI, позволяет преодолеть существующие ограничения параллельных технологий в том, что касается производительности, масштабируемости и доступности данных.

Несколько уровней совместимости

Физическая совместимость

Разъем SAS является универсальным и по форм-фактору совместим с SATA. Это позволяет напрямую подключать к системе SAS как накопители SAS, так и накопители SATA и таким образом использовать систему либо для жизненно важных приложений, требующих высокой производительности и оперативного доступа к данным, либо для более экономичных приложений с более низкой стоимостью в пересчете на гигабайт.

Набор команд SATA является подмножеством набора команд SAS, что обеспечивает совместимость устройств SATA и контроллеров SAS. Однако SAS накопители не могут работать с контроллером SATA, поэтому они снабжены специальными ключами на разъёмах, чтобы исключить вероятность неверного подключения.

Кроме того, сходные физические параметры интерфейсов SAS и SATA позволяют использовать новую универсальную заднюю панель SAS, которая обеспечивает подключение как накопителей SAS, так и накопителей SATA. В результате отпадает необходимость в использовании двух разных задних панелей для накопителей SCSI и ATA. Подобная конструктивная совместимость выгодна как производителям задних панелей, так и конечным пользователям, ведь при этом снижаются затраты на оборудование и проектирование.

Совместимость на уровне протоколов

Технология SAS включает в себя три типа протоколов, каждый из которых используется для передачи данных разных типов по последовательному интерфейсу в зависимости от того, к какому устройству осуществляется доступ. Первый - это последовательный SCSI протокол (Serial SCSI Protocol SSP), передающий команды SCSI, второй - управляющий протокол SCSI (SCSI Management Protocol SMP), передающий управляющую информацию на расширители. Третий - туннельный протокол SATA (SATA Tunneled Protocol STP), устанавливает соединение, которое позволяет передавать команды SATA. Благодаря использованию этих трех протоколов интерфейс SAS полностью совместим с уже существующими SCSI приложениями, управляющим ПО и устройствами SATA.

Такая мультипротокольная архитектура, в сочетании с физической совместимостью разъемов SAS и SATA, делает технологию SAS универсальным связующим звеном между устройствами SAS и SATA.

Выгоды совместимости

Совместимость SAS и SATA дает целый ряд преимуществ проектировщикам систем, сборщикам и конечным пользователям.

Проектировщики систем могут благодаря совместимости SAS и SATA использовать одни и те же задние панели, разъемы и кабельные соединения. Модернизация системы с переходом от SATA к SAS фактически сводится замене дисковых накопителей. Напротив, для пользователей традиционных параллельных интерфейсов переход от ATA к SCSI означает замену задних панелей, разъемов, кабелей и накопителей. К числу других экономичных преимуществ совместимости последовательных технологий следует отнести упрощенную процедуру сертификации и управление материальной частью.

VAR реселлеры и сборщики систем получают возможность легко и быстро изменять конфигурацию заказных систем, просто устанавливая в систему соответствующий дисковый накопитель. Отпадает необходимость работать с несовместимыми технологиями и использовать специальные разъемы и разные кабельные соединения. Более того, дополнительная гибкость в том, что касается выбора оптимального соотношения цены и производительности, позволит VAR реселлерам и сборщикам систем лучше дифференцировать свои продукты.

Для конечных пользователей совместимость SATA и SAS означает новый уровень гибкости в том, что касается выбора оптимального соотношения цены и производительности. Накопители SATA станут наилучшим решением для недорогих серверов и систем хранения данных, в то время как накопители SAS обеспечат максимальную производительность, надежность и совместимость с управляющим ПО. Возможность модернизации с переходом от накопителей SATA к накопителям SAS без необходимости приобретать для этого новую систему значительно упрощает процесс принятия решения о покупке, защищает инвестиции в систему и снижает общую стоимость владения.

Совместная разработка протоколов SAS и SATA

20 января 2003 года Ассоциация производителей SCSI Trade Association (STA) и Рабочая группа Serial ATA (SATA) II Working Group объявили о сотрудничестве в целях обеспечения совместимости технологии SAS с дисковыми накопителями SATA на системном уровне.

Сотрудничество этих двух организаций, а также совместные усилия поставщиков систем хранения данных и комитетов по стандартам направлены на выработку еще более точных директив в области совместимости, что поможет проектировщикам систем, ИТ специалистам и конечным пользователям осуществлять еще более тонкую настройку своих систем с целью достижения оптимальной производительности и надёжности и снижения общей стоимости владения.

Спецификация SATA 1.0 была утверждена в 2001 году, и сегодня на рынке представлены продукты SATA от различных производителей. Спецификация SAS 1.0 была утверждена в начале 2003 года, а первые продукты должны появиться на рынке в первой половине 2004 года.

В современных компьютерных системах для подключения основных жестких дисков используются интерфейсы SATA и SAS. Как правило, первый вариант устраивает домашние рабочие станции, второй – серверные, поэтому технологии между собой не конкурируют, отвечая разным требованиям. Значительная разница в стоимости и объеме памяти заставляет пользователей задаваться вопросом, чем отличается SAS от SATA, и искать компромиссные варианты. Посмотрим, так ли это целесообразно.

SAS (Serial Attached SCSI) – последовательный интерфейс подключения устройств хранения данных, разработанный на основе параллельного SCSI для исполнения того же набора команд. Используется преимущественно в серверных системах.

SATA (Serial ATA) – последовательный интерфейс обмена данными, базирующийся на основе параллельного PATA (IDE). Применяется в домашних, офисных, мультимедийных ПК и ноутбуках.

Если говорить о HDD, то, несмотря на различающиеся технические характеристики и разъемы, кардинальных расхождений между устройствами нет. Обратная односторонняя совместимость дает возможность подключать к серверной плате диски и по одному, и по второму интерфейсу.

Стоит заметить, что оба варианта подключения реальны и для SSD, но весомое отличие SAS от SATA в этом случае будет в стоимости накопителя: первый может быть дороже в десятки раз при сопоставимом объеме. Поэтому сегодня такое решение если уже и не редкое, то в достаточной мере взвешенное, и предназначено для быстрых центров обработки данных корпоративного уровня.

Сравнение

Как мы уже знаем, SAS находит применение в серверах, SATA – в домашних системах. На практике это означает, что к первым одновременно обращается много пользователей и решается множество задач, со вторыми же имеет дело один человек. Соответственно, серверная нагрузка намного выше, поэтому диски должны быть достаточно отказоустойчивыми и быстрыми. Протоколы SCSI (SSP, SMP, STP), реализованные в SAS, позволяют обрабатывать больше операций ввода/вывода одновременно.

Непосредственно для HDD скорость обращения определяется в первую очередь скоростью вращения шпинделя. Для desktop-систем и ноутбуков необходимо и достаточно 5400 – 7200 RPM. Соответственно, найти SATA-диск с 10000 RPM почти невозможно (разве что посмотреть серию WD VelociRaptor, предназначенную, опять же, для рабочих станций), а все, что выше, – абсолютно недостижимо. SAS HDD раскручивает минимум 7200 RPM, стандартом можно считать 10000 RPM, а достаточным максимумом – 15000 RPM.

Считается, что диски с последовательным SCSI надежнее, у них выше показатели наработки на отказ. На практике стабильность достигается больше за счет функции проверки контрольных сумм. Накопители SATA же страдают от «тихих ошибок», когда данные записываются частично либо повреждены, что приводит к появлению bad-секторов.

На отказоустойчивость системы работает и главное достоинство SAS – два дуплексных порта, позволяющих подключить одно устройство по двум каналам. Обмен информацией в этом случае будет вестись одновременно в обоих направлениях, а надежность обеспечивается технологией Multipath I/O (два контроллера страхуют друг друга и разделяют нагрузку). Очередь помеченных команд выстраивается глубиной до 256. У большинства дисков SATA один полудуплексный порт, а глубина очереди по технологии NCQ – не более 32.

Интерфейс SAS предполагает использование кабелей длиной до 10 м. К одному порту через расширители можно подключить до 255 устройств. SATA ограничивается 1 м (2 м для eSATA), и поддерживает подключение только одного устройства по типу «точка – точка».

Перспективы дальнейшего развития – то, в чем разница между SAS и SATA тоже ощущается достаточно остро. Пропускная способность интерфейса SAS достигает 12 Гбит/с, а производители анонсируют поддержку скорости обмена данными 24 Гбит/с. Последняя ревизия SATA остановилась на 6 Гбит/с и эволюционировать в этом отношении не будет.

Накопители SATA в пересчете на стоимость 1 Гб обладают очень привлекательным ценником. В системах, где скорость доступа к данным не имеет решающего значения, а объем хранимой информации велик, целесообразно использовать именно их.

Таблица

SAS SATA
Для серверных систем Преимущественно для настольных и мобильных систем
Использует набор команд SCSI Использует набор команд ATA
Минимальная скорость вращения шпинделя HDD 7200 RPM, максимальная – 15000 RPM Минимум 5400 RPM, максимум 7200 RPM
Поддерживается технология проверки контрольных сумм при записи данных Большой процент ошибок и bad-секторов
Два дуплексных порта Один полудуплексный порт
Поддерживается Multipath I/O Подключение по типу «точка – точка»
Очередь команд до 256 Очередь команд до 32
Можно использовать кабели до 10 м Длина кабелей не более 1 м
Пропускная способность шины до 12 Гбит/с (в перспективе – 24 Гбит/с) Пропускная способность 6 Гбит/с (SATA III)
Стоимость накопителей выше, иногда значительно Дешевле в пересчете на цену за 1 Гб

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.

Введение

Посмотрите на современные материнские платы (или даже на некоторые более старые платформы). Нужен ли для них специальный RAID-контроллер? На большинстве материнских плат есть трехгигабитные порты SATA, также как аудио-разъёмы и сетевые адаптеры. Большинство современных чипсетов, таких как AMD A75 и Intel Z68 , имеют поддержку SATA на 6 Гбит/с. При такой поддержке со стороны чипсета, мощному процессору и наличию портов ввода/вывода, нужны ли вам дополнительные карты для систем хранения и отдельный контроллер?

В большинстве случаев обычные пользователи могут создать массивы RAID 0, 1, 5 и даже 10, используя встроенные порты SATA на материнской плате и специальное ПО, при этом можно получить очень высокую производительность. Но в тех случаях, когда требуется более сложный уровень RAID – 30, 50 или 60 – более высокий уровень управления диском или масштабируемость, то контроллеры на чипсете могут не справиться с ситуацией. В таких случаях нужны решения профессионального класса.

В таких случаях вы больше не ограничены системами хранения SATA. Большое количество специальных карт обеспечивают поддержку SAS (Serial-Attached SCSI) или дисков Fibre Channel (FC), каждый из этих интерфейсов несёт с собой уникальные преимущества.

SAS и FC для профессиональных решений RAID

Каждый из трёх интерфейсов (SATA, SAS и FC) имеет свои плюсы и свои минусы, никакой из них не может быть безоговорочно назван лучшим. Сильные стороны приводов на базе SATA заключаются в высокой ёмкости и низкой цене, в сочетании с высокими скоростями передачи данных. Диски SAS славятся своей надёжностью, масштабируемостью и высокой скоростью ввода/вывода. Системы хранение FC обеспечивают постоянную и очень высокую скорость передачи данных. Некоторые компании до сих пор используют решения Ultra SCSI, хотя они могут работать не более чем с 16 устройствами (один контроллер и 15 дисков). Более того, полоса пропускания в этом случае не превышает 320 Мбайт/с (в случае Ultra-320 SCSI), что не может конкурировать с более современными решениями.

Ultra SCSI – это стандарт для профессиональных корпоративных решений систем хранения. Однако SAS приобретает всё большую популярность, поскольку предлагает не только существенно бoльшую полосу пропускания, но также и большую гибкость при работе со смешанными системами SAS/SATA, что позволяет оптимизировать издержки, производительность, готовность и ёмкость даже в одном единственном JBOD (наборе дисков). Кроме того, многие SAS-диски обладают двумя портами с целью возможности резервирования. Если одна карта контроллера выходит из строя, то переключение дисковода на другой контроллер позволяет избежать отказа всей системы. Таким образом SAS обеспечивает высокую надежность всей системы.

Более того, SAS – это не только протокол "точка-точка" для соединения контроллера и устройства хранения. Он поддерживает до 255 устройств хранения на порт SAS при использовании экспандера. Используя двухуровневую структуру экспандеров SAS, теоретически, можно присоединить к одному каналу SAS 255 x 255 (или чуть больше 65 000) устройств хранения, если конечно контроллер способен поддерживать такое большое число устройств.

Adaptec, Areca, HighPoint и LSI: тесты четырёх контроллеров SAS RAID

В этом сравнительном тесте мы исследуем производительность современных SAS RAID-контроллеров, которые представлены четырьмя продуктами: Adaptec RAID 6805, Areca ARC-1880i, HighPoint RocketRAID 2720SGL и LSI MegaRAID 9265-8i.

Почему SAS, а не FC? С одной стороны, SAS – на сегодня наиболее интересная и уместная архитектура. Она предоставляет такие возможности, как зонирование, которое очень привлекательно для профессиональных пользователей. С другой стороны, роль FC на профессиональном рынке снижается, а некоторые аналитики даже предсказывают её полный уход, основываясь на количестве поставленных жёстких дисков. По мнению экспертов IDC, будущее FC выглядит достаточно мрачным, а вот жёсткие диски SAS могут претендовать на 72% рынка корпоративных жёстких дисков в 2014 году.

Adaptec RAID 6805

Производитель чипов PMC-Sierra вывел на рынок серию "Adaptec by PMC" семейства контроллеров RAID 6 в конце 2010 г. Карты контроллера серии 6 основаны на двухъядерном контроллере ROC (RAID on Chip) SRC 8х6 Гбайт, который поддерживает кэш-память 512 Мбайт и до 6 Гбит/с на SAS-порт. Есть три низкопрофильные модели: Adaptec RAID 6405 (4 внутренних порта), Adaptec RAID 6445 (4 внутренних и 4 внешних порта) и та, что мы тестировали – Adaptec RAID 6805 с восемью внутренними портами, стоимостью около $460.

Все модели поддерживают JBOD и RAID всех уровней – 0, 1, 1E, 5, 5EE, 6, 10, 50 и 60.

Соединённый с системой через интерфейс x8 PCI Express 2.0, Adaptec RAID 6805 поддерживает до 256 устройств через SAS экспандер. В соответствии со спецификациями производителя, стабильная скорость передачи данных в систему может достигать 2 Гбайт/с, а пиковая может достигать 4.8 Гбайт/с на агрегированный SAS-порт и 4 Гбайт/с на интерфейс PCI Express – последняя цифра – максимальное теоретически возможное значение для шины PCI Express 2.0х.

ZMCP без необходимости поддержки

Наш тестовый образец пришел с Adaptec Falsh Module 600, который использует Zero Maintenance Cache Protection (ZMCP) и не использует устаревший Battery Backup Unit (BBU). Модуль ZMCP – это блок с флэш-чипом на 4 Гбайт NAND, который используется для резервного копирования кэш-памяти контроллера в случае отключения энергопитания.

Поскольку копирование из кэш-памяти во флэш-память происходит очень быстро, Adaptec использует конденсаторы для поддержки питания, а не аккумуляторы. Преимущество конденсаторов заключается в том, что они могут работать так же долго, как и сами карты, тогда как резервные аккумуляторы должны заменяться каждые несколько лет. Кроме того, однажды скопированные во флэш-память данные могут храниться там несколько лет. Для сравнения: вы обычно имеете около трёх дней для хранения данных перед тем, как кэшированная информация будет потеряна, что заставляет вас торопиться с восстановлением данных. Как и предполагает само название ZMCP, это решение, способное противостоять отказам по энергопитанию.


Производительность

Adaptec RAID 6805 в режиме RAID 0 проигрывает в наших тестах потокового чтения/записи. Кроме того RAID 0 – это не типичный случай для бизнеса, которому нужна защита данных (хотя он вполне может использоваться для рабочей станции, занимающейся рендерингом видео). Последовательное чтение идёт на скорости 640 Мбайт/с, а последовательная запись – на 680 Мбайт/с. По этим двум параметрам LSI MegaRAID 9265-8i занимает верхнюю позицию в наших тестах. Adaptec RAID 6805 работают лучше в тестах RAID 5, 6 и 10, но не является абсолютным лидером. В конфигурации только с SSD, контроллер Adaptec работает на скорости до 530 Мбайт/с, но его превосходят контроллеры Areca и LSI.

Карта Adaptec автоматически распознаёт то, что она называет конфигурацией HybridRaid, которая состоит из смеси жёстких и SSD-дисков, предлагая RAID на уровнях от 1 до 10 в такой конфигурации. Эта карта превосходит своих конкурентов благодаря специальным алгоритмам чтения/записи. Они автоматически направляют операции чтения на SSD, а операции записи и на жёсткие диски, и на SSD. Таким образом операции чтения будут работать как в системе только из SSD, а запись будет работать не хуже, чем в системе из жёстких дисков.

Однако, результаты наших тестов не отражают теоретической ситуации. За исключением бенчмарков для Web-сервера, где работает скорость передачи данных для гибридной системы, гибридная система SSD и жёстких дисков не может приблизиться к скорости работы системы только из SSD.

Контроллер Adaptec показывает себя гораздо лучше в тесте производительности ввода/вывода для жёстких дисков. Вне зависимости от типа бенчмарков (база данных, файл-сервер, Web-сервер или рабочая станция), контроллер RAID 6805 идёт нога в ногу с Areca ARC-1880i и LSI MegaRAID 9265-8i, и занимает первое или второе места. Только HighPoint RocketRAID 2720SGL лидирует в тесте ввода/вывода. Если заменить жёсткие диски на SSD, то LSI MegaRAID 9265-8i существенно обгоняет три других контроллера.

Установка ПО и настройка RAID

Adaptec и LSI обладают хорошо организованными и простыми в работе средствами для управления RAID. Инструменты управления позволяют администраторам получить удалённый доступ к контроллерам через сеть.

Установка массива

Areca ARC-188oi

Areca также выводит серию ARC-1880 в рыночный сегмент контроллеров 6 Гбит/с SAS RAID. По утверждению производителя, целевые приложения простираются от приложений NAS и серверов систем хранения до высокопроизводительных вычислений, резервирования, систем обеспечения безопасности и облачных вычислений.

Протестированные образцы ARC-1880i с восемью внешними портами SAS и восемью линиями интерфейса PCI Express 2.0 можно приобрести за $580. Низкопрофильная карта, которая является единственной картой в нашем наборе с активным кулером, построена на базе 800 МГц ROC с поддержкой кэша для данных 512 Мбайт DDR2-800. Используя SAS экспандеры, Areca ARC-1880i поддерживает до 128 систем хранения данных. Чтобы сохранить содержание кэша при отказе энергопитания, к системе опционально может быть добавлен аккумуляторный источник питания.

Кроме одиночного режима и JBOD, контроллер поддерживает уровни RAID 0, 1, 1E, 3, 5, 6, 10, 30, 50 и 60.

Производительность

Areca ARC-1880i хорошо справляется с тестами чтения/записи в RAID 0, достигая 960 Мбайт/с для чтения и 900 Мбайт/с для записи. Только LSI MegaRAID 9265-8i оказывается быстрее в этом конкретном тесте. Контроллер Areca не разочаровывает и в других бенчмарках. И в работе с жёсткими дисками, и с SSD, этот контроллер всегда активно конкурирует с победителями тестов. Хотя контроллер Areca стал лидером только в одном бенчмарке (последовательное чтение в RAID 10), он демонстрировал очень высокие результаты, например, скорость чтения в 793 Мбайт/с в то время, как самый быстрый конкурент, LSI MegaRAID 9265-8i, показал только 572 Мбайт/с.

Однако последовательная передача информации – это лишь одна из частей картины. Вторая – производительность ввода/вывода. Areca ARC-1880i и здесь выступает блистательно, на равных соперничая с Adaptec RAID 6805 и LSI MegaRAID 9265-8i. Аналогично своей победе в бенчмарке по скорости передачи данных, контроллер Areca победил и в одном из тестов ввода/вывода – бенчмарке Web-сервер. Контроллер Areca доминирует в бенчмарке Web-сервер на уровнях RAID 0, 5 и 6, а для RAID 10 вперёд вырывается Adaptec 6805, оставляя контроллер Areca на втором месте с небольшим отставанием.

Web GUI и установка параметров

Как и HighPoint RocketRAID 2720SGL, Areca ARC-1880i удобно управляется через Web-интерфейс и просто настраивается.

Установка массива

HighPoint RocketRAID 2720SGL

HighPoint RocketRAID 2720SGL – это SAS RAID-контроллер с восемь внутренними SATA/SAS-портами, каждый из которых поддерживает 6 Гбит/с. По информации производителя, эта низкопрофильная карта ориентирована на системы хранения для малого и среднего бизнеса, и на рабочие станции. Ключевой компонент карты – это RAID-контроллер Marvell 9485. Основные конкурентные преимущества – малые размеры и интерфейс PCIe 2.0 на 8 линий.

Кроме JBOD, карта поддерживает RAID 0, 1, 5, 6, 10 и 50.

Кроме той модели, что была протестирована в наших тестах, в низкопрофильной серии HighPoint 2700 есть ещё 4 модели: RocketRAID 2710, RocketRAID 2711, RocketRAID 2721 и RocketRAID 2722, которые, в основном, отличаются типами портов (внутренний/внешний) и их количеством (от 4 до 8). В наших тестах использовался самый дешёвый из этих RAID-контроллеров RocketRAID 2720SGL ($170). Все кабели к контроллеру приобретаются отдельно.

Производительность

В процессе последовательного чтения/записи в массив RAID 0, состоящий из восьми дисков Fujitsu MBA3147RC, HighPoint RocketRAID 2720SGL демонстрирует отличную скорость чтения 971 Мбайт/с, уступая только LSI MegaRAID 9265-8i. Скорость записи – 697 Мбайт/с – не так высока, но тем не менее превосходит скорость записи Adaptec RAID 6805. RocketRAID 2720SGL также демонстрирует целый спектр самых разных результатов. При работе с массивами RAID 5 и 6 он превосходит другие карты, но с RAID 10 скорость чтения падает до 485 Мбайт/с – самое низкое значение среди четырёх тестируемых образцов. Последовательная скорость записи в RAID 10 ещё хуже – всего 198 Мбайт/с.

Этот контроллер явно не создан для SSD. Скорость чтения здесь достигает 332 Мбайт/с, а скорость записи – 273 Мбайт/с. Даже Adaptec RAID 6805, который также не слишком хорош в работе с SSD, показывает в два раза лучшие результаты. Поэтому HighPoint не является конкурентом для двух карт, которые работают с SSD действительно хорошо: Areca ARC-1880i и LSI MegaRAID 9265-8i – они работают как минимум в три раза быстрее.

Всё, что мы смогли сказать хорошего о работе HighPoint в режиме ввода/вывода, мы сказали. Тем не менее RocketRAID 2720SGL занимает последнее место в наших тестах по всем четырём бенчмаркам Iometer. Контроллер HighPoint вполне конкурентоспособен другим картам при работе с бенчмарком для Web-сервера, но существенно проигрывает конкурентам по трём другим бенчмаркам. Это становится очевидным в тестах с SSD, где RocketRAID 2720SGL явно демонстрирует, что он не оптимизирован для работы с SSD. Он явно не использует все преимущества SSD по сравнению с жёсткими дисками. Например, RocketRAID 2720SGL показывает 17378 IOPs в бенчмарке баз данных, а LSI MegaRAID 9265-8i превосходит его по этому параметру в четыре раза, выдавая 75 037 IOPs.

Web GUI и установки для массива

Web-интерфейс RocketRAID 2720SGL удобен и прост в работе. Все параметры RAID устанавливаются легко.

Установка массива

LSI MegaRAID 9265-8i

LSI позиционирует MegaRAID 9265-8i, как устройство для рынка малого и среднего бизнеса. Эта карта подходит для обеспечения надёжности в облаках и других бизнес-приложений. MegaRAID 9265-8i – один из наиболее дорогих контроллеров в нашем тесте (он стоит $630), но как показывает тест, эти деньги платятся за его реальные преимущества. Перед тем, как мы представим результаты тестов, давайте обсудим технические особенности этих контроллеров и программные приложения FastPath и CacheCade.

LSI MegaRAID 9265-8i использует двухъядерный LSI SAS2208 ROC, использующий интерфейс PCIe 2.0 с восемью линиями. Число 8 в конце наименования устройства означает наличие восьми внутренних портов SATA/SAS, каждый из которых поддерживает скорость 6 Гбит/с. До 128 устройства хранения могут быть подключены к контроллеру через экспандеры SAS. Карта LSI cодержит 1 Гбайт кэша DDR3-1333 и поддерживает уровни RAID 0, 1, 5, 6, 10 и 60.

Настройка ПО и RAID, FastPath и CacheCade

LSI утверждает, что FastPath может существенно ускорить работу систем ввода/вывода при подключении SSD. По словам экспертов компании LSI, FastPath работает с любым SSD, заметно увеличивая производительность записи/чтения RAID-массива на базе SSD: в 2.5 раза при записи и в 2 раза при чтении, достигая 465 000 IOPS. Эту цифру мы не смогли проверить. Тем не менее, эта карта смогла выжать максимум из пяти SSD и без использования FastPath.

Следующее приложение для MegaRAID 9265-8i называется CacheCade. С его помощью можно использовать один SSD в качестве кэш-памяти для массива жёстких дисков. По словам экспертов LSI, это может ускорить процесс считывания раз в 50, в зависимости от размера рассматриваемых данных, приложений и метода использования. Мы попробовали работу этого приложения на массиве RAID 5, состоящем из 7 жёстких дисков и одного SSD (SSD использовался для кэша). По сравнению с системой RAID 5 из 8 жёстких дисков, стало очевидно, что CacheCade не только повышает скорость ввода/вывода, но также и общую производительность (тем больше, чем меньше объём постоянно используемых данных). Для тестирования мы использовали 25 Гбайт данных и получили 3877 IOPS на Iometer в шаблоне для Web-сервера, тогда как обычный массив жёстких дисков позволял получить только 894 IOPS.

Производительность

В конце концов оказывается, что LSI MegaRAID 9265-8i – это самый быстрый из всех SAS RAID-контроллеров в этом обзоре в операциях ввода/вывода. Однако, в процессе последовательных операций чтения/записи контроллер демонстрирует производительность среднего уровня, поскольку его производительность при последовательных действиях сильно зависит от уровня RAID, который вы используете. При тестировании жёсткого диска на уровне RAID 0 мы получаем скорость последовательно чтения 1080 Мбайт/с (что существенно превышает показатели конкурентов). Скорость последовательной записи на уровне RAID 0 идёт на уровне 927 Mбайт/с, что также выше, чем у конкурентов. А вот для RAID 5 и 6 контроллеры LSI уступают всем своим конкурентам, превосходя их только в RAID 10. В тесте SSD RAID LSI MegaRAID 9265-8i демонстрирует лучшую производительность при последовательной записи (752 Mбайт/с) и только Areca ARC-1880i превосходит его по параметрам последовательного чтения.

Если вы ищете RAID-контроллер, ориентированный на SSD с высокой производительностью ввода/вывода, то здесь лидер – контроллер LSI. За редким исключением, он занимает первое место в наших тестах ввода/вывода для файл-сервера, Web-сервера и нагрузок для рабочих станций. Когда ваш RAID-массив состоит из SSD, конкуренты LSI ничего не могут ему противопоставить. Например, в бенчмарке для рабочих станций MegaRAID 9265-8i достигает 70 172 IOPS, тогда как оказавшийся на втором месте Areca ARC-1880i, уступает ему практически в два раза - 36 975 IOPS.

ПО для RAID и установка массива

Как и в случае Adaptec, LSI имеет удобные инструменты для управления RAID-массивом через контроллер. Вот несколько скриншотов:

ПО для CacheCade

ПО для RAID

Установка массива

Сравнительная таблица и конфигурация тестового стенда

Производитель Adaptec Areca
Продукт RAID 6805 ARC-1880i
Форм-фактор Низкопрофильный MD2 Низкопрофильный MD2
Число портов SAS 8 8
6 Гбит/с (SAS 2.0) 6 Гбит/с (SAS 2.0)
Внутренние порты SAS 2хSFF-8087 2хSFF-8087
Внешние порты SAS Нет Нет
Кэш-память 512 Мбайт DDR2-667 512 Мбайт DDR2-800
Основной интерфейс PCIe 2.0 (х8) PCIe 2.0 (х8)
XOR и тактовая частота PMC-Sierra PM8013/Нет данных Нет данных/800 МГц
Поддерживаемые уровни RAID 0, 1, 1E, 5, 5EE, 6, 10, 50, 60 0, 1, 1E, 3, 5, 6, 10, 30, 50, 60
Windows 7, Windows Server 2008/2008 R2, Windows Server 2003/2003 R2, Windows Vista, VMware ESX Classic 4.x (vSphere),Red Hat Enterprise Linux (RHEL), SUSE Linux Enterprise Server (SLES), Sun Solaris 10 x86, FreeBSD, Debian Linux, Ubuntu Linux Windows 7/2008/Vista/XP/2003, Linux, FreeBSD, Solaris 10/11 x86/x86_64, Mac OS X 10.4.x/10.5.x/10.6.x, VMware 4.x
Аккумулятор Нет Опционально
Вентилятор Нет Есть

Производитель HighPoint LSI
Продукт RocketRAID 2720SGL MegaRAID 9265-8i
Форм-фактор Низкопрофильный MD2 Низкопрофильный MD2
Число портов SAS 8 8
Полоса пропускания SAS на один порт 6 Гбит/с (SAS 2.0) 6 Гбит/с (SAS 2.0)
Внутренние порты SAS 2хSFF-8087 2хSFF-8087
Внешние порты SAS Нет Нет
Кэш-память Нет данных 1 Гбайт DDR3-1333
Основной интерфейс PCIe 2.0 (х8) PCIe 2.0 (х8)
XOR и тактовая частота Marvel 9485/Нет данных LSI SAS2208/800 МГц
Поддерживаемые уровни RAID 0, 1, 5, 6, 10, 50 0, 1, 5, 6, 10, 60
Поддерживаемые операционные системы Windows 2000, XP, 2003, 2008, Vista, 7, RHEL/CentOS, SLES, OpenSuSE, Fedora Core, Debian, Ubuntu, FreeBSD bis 7.2 Microsoft Windows Vista/2008/Server 2003/2000/XP, Linux, Solaris (x86), Netware, FreeBSD, Vmware
Аккумулятор Нет Опционально
Вентилятор Нет Нет

Тестовая конфигурация

Мы соединили восемь жёстких дисков Fujitsu MBA3147RC SAS (каждый по 147 Гбайт) с RAID-контроллерами и провели бенчмарки для RAID-уровней 0, 5, 6 и 10. Тесты SSD проводились с пятью дисками Samsung SS1605.

Аппаратное обеспечение
Процессор Intel Core i7-920 (Bloomfield) 45 нм, 2.66 ГГц, 8 Мбайт общая L3 кэш-память
Материнская плата (LGA 1366) Supermicro X8SAX, Revision: 1.0, Чипсет Intel X58 + ICH10R, BIOS: 1.0B
Контроллер LSI MegaRAID 9280-24i4e
Прошивка: v12.12.0-0037
Driver: v4.32.0.64
Оперативная память 3 x 1 Гбайт DDR3-1333 Corsair CM3X1024-1333C9DHX
Жёсткий диск Seagate NL35 400 Гбайт, ST3400832NS, 7200 об/мин, SATA 1.5 Гбит/с, 8 Мбайт кэш-память
Блок питания OCZ EliteXstream 800 W, OCZ800EXS-EU
Бенчмарки
Производительность CrystalDiskMark 3
Производительность ввода/вывода Iometer 2006.07.27
File server Benchmark
Web server Benchmark
Database Benchmark
Workstation Benchmark
Streaming Reads
Streaming Writes
4k Random Reads
4k Random Writes
ПО и драйверы
Операционная система Windows 7 Ultimate

Результаты тестов

Проиводительность ввода/вывода в RAID 0 и 5

Бенчмарки в RAID 0 не показывают существенной разницы между RAID-контроллерами, за исключением HighPoint RocketRAID 2720SGL.




Бенчмарк в RAID 5 не помогает контроллеру HighPoint обрести утраченные позиции. В отличие от бенчмарка в RAID 0, все три более быстрых контроллера более отчётливо проявляют здесь свои слабые и сильные стороны.




Производительность ввода/вывода в RAID 6 и 10

LSI оптимизировала свой контроллер MegaRAID 9265 для работы с базами данных, файл-серверами и нагрузками для рабочих станций. Бенчмарк для Web-севера хорошо проходят все контроллеры, демонстрируя одинаковую производительность.




В варианте RAID 10 за первое место борются Adaptec и LSI, а HighPoint RocketRAID 2720SGL занимает последнее место.




Производительность при вводе/выводе на SSD

Здесь лидирует LSI MegaRAID 9265, которая использует все преимущества твердотельных систем хранения.




Пропускная способность в RAID 0, 5 и в деградированном режиме RAID 5

LSI MegaRAID 9265 c лёгкостью лидирует в этом бенчмарке. Adaptec RAID 6805 сильно отстаёт.


HighPoint RocketRAID 2720SGL без кэша хорошо справляется с последовательными операциями в RAID 5. Не сильно уступают ему и другие контроллеры.


Деградированный RAID 5


Пропускная способность в RAID 6, 10 и в деградированном режиме RAID 6

Как и в случае RAID 5, HighPoint RocketRAID 2720SGL демонстрирует самую высокую пропускную способность для RAID 6, оставляя второе место для Areca ARC-1880i. Впечатление такое, что LSI MegaRAID 9265-8i просто не любит RAID 6.


Деградированный RAID 6


Здесь уже LSI MeagaRAID 9265-8i показывает себя в лучшем свете, хотя и пропускает вперед Areca ARC-1880i.

LSI CacheCade




Какой же 6 Гбит/с SAS-контроллер лучший?

В общем, все четыре SAS RAID-контроллера, которые мы тестировали, продемонстрировали хорошую производительность. У всех есть вся необходимая функциональность, и все они с успехом могут используются в серверах начального и среднего уровня. Кроме выдающейся производительности, они обладают и такими важными функциями, как работа в смешанном окружении с поддержкой SAS и SATA и масштабирование через SAS-экспандеры. Все четыре контроллера поддерживают стандарт SAS 2.0, он поднимает пропускную способность с 3 Гбит/с до 6 Гбит/с на порт, а кроме этого вводит такие новые функции, как зонирование SAS, что позволяет многим контроллерам получить доступ к ресурсам хранения данных через один SAS-экспандер.

Несмотря на такие схожие черты, как низкопрофильный форм-фактор, интерфейс PCI Express на восемь линий и восемь SAS 2.0 портов, у каждого контроллера есть свои собственные сильные и слабые стороны, анализируя которые и можно выдать рекомендации по их оптимальному использованию.

Итак, самый быстрый контроллер – это LSI MegaRAID 9265-8i, особенно в отношении пропускной способности ввода/вывода. Хотя и у него есть слабые места, в частности, не слишком высокая производительность в случаях RAID 5 и 6. MegaRAID 9265-8i лидирует в большинстве бенчмарков и является прекрасным решением профессионального уровня. Стоимость этого контроллера – $630 – самая высокая, об этом тоже нельзя забывать. Но за эту высокую стоимость вы получаете прекрасный контроллер, который опережает своих конкурентов, особенно при работе с SSD. Он обладает и прекрасной производительностью, которая становится особенно ценной при подключении систем хранения большого объёма. Более того, вы можете увеличить производительность LSI MegaRAID 9265-8i, используя FastPath или CacheCade, за которые естественно надо будет заплатить дополнительно.

Контроллеры Adaptec RAID 6805 и Areca ARC-1880i демонстрируют одинаковую производительность и очень похожи по своей стоимости ($460 и $540). Оба хорошо работают, как показывают различные бенчмарки. Контроллер Adaptec показывает чуть более высокую производительность, чем контроллер Areca, он также предлагает востребованную функцию ZMCP (Zero Maintenance Cache Protection), которая заменяет обычное резервирование при отказе питания и позволяет продолжать работу.

HighPoint RocketRAID 2720SGL продаётся всего за $170, что гораздо дешевле трёх остальных протестированных контроллеров. Производительность этого контроллера вполне достаточна, если вы работаете с обычными дисками, хотя и хуже, чем у контроллеров Adaptec или Areca. И не стоит использовать этот контроллер для работы с SSD.