Компьютеры        16.02.2022   

Haswell: заглянем под крышечку. «Так» компании Intel

Статьи, посвящённые микроархитектуре принципиально новых процессоров Intel, обычно начинаются с отсылки к принятой в компании с 2007 года модели разработки «тик-так». Суть ее заключается в том, что разработка новых процессорных дизайнов и перевод производства на более совершенные технологические нормы чередуются друг с другом. Прошлая микроархитектура, Ivy Bridge, в этой классификации была «тиком», новая же, Haswell, — это «так». То есть в лице Haswell, по идее, мы должны увидеть кардинально обновлённый изнутри процессор, но выпускаемый по уже привычной 22-нм технологии с трёхмерными транзисторами.

Именно поэтому с предстоящим выходом Haswell связаны такие большие ожидания. Рынок персональных компьютеров находится в застое. Конкуренция между производителями x86-процессоров в высокопроизводительном сегменте сошла на нет, а сами настольные компьютеры потихоньку сдают свои позиции под натиском мобильных устройств. Не исправило этой ситуации даже появление операционной системы Windows 8 — ей не только не удалось вернуть былой интерес к персональным компьютерам, более того, у многих адептов традиционных форм-факторов она вызвала стойкую неприязнь. И теперь все энтузиасты ждут революции от Intel, надеясь на качественный скачок, который бы несмотря ни на что пробудил интерес к потерявшей былую динамику платформе x86. Кто-то верит, что классические десктопы и ноутбуки могут вновь сделаться модной тенденцией, а кто-то ожидает, что появление новой линейки процессоров хотя бы подтолкнёт владельцев уже имеющихся систем к их модернизации. Иными словами, Haswell в глазах энтузиастов производительных персональных компьютеров — это чуть ли не последняя надежда на оживление близкого сердцу сегмента рынка.

Однако у Intel на этот счёт, похоже, мнение совсем иное. Остывание интереса к производительным персональным компьютерам чувствуют и в компании, но, с учетом сложившейся конъюнктуры, планируется не пытаться разогревать старые рынки, а взяться за завоевание новых. Корректировке подвергается вся генеральная линия. Intel не намерена продолжать активно бороться за честь традиционных и привычных многим систем, а вместо этого она хочет заниматься внесением изменений в архитектуру x86 и имеющиеся продукты с тем, чтобы приспособить их для тех классов мобильных устройств, которые находятся сейчас на пике популярности. Отчасти этой цели служат начавшиеся коренные преобразования в хозяйстве Atom: активное продвижение процессоров этого класса в смартфоны и планшеты, а также подготовка новой микроархитектуры Silvermont. Но параллельно метаморфозы будут происходить и с процессорной линейкой Core, которая по замыслу разработчиков должна стать ещё более мобильной. И Haswell — хотя уже не первая, но, наверное, самая заметная веха на этом пути.

Все презентации и материалы для прессы, посвящённые перспективным процессорам, на первых же страницах рассказывают нам о том, что Haswell в первую очередь нацеливается на ультрабуки и ультрапортативные ноутбуки-трансформеры, которые легким движением руки превращаются в планшеты. И это как нельзя лучше отражает ту цель, которая стояла перед разработчиками новой микроархитектуры. Если на этапе создания микроархитектур Sandy Bridge и Ivy Bridge инженеры работали над дизайном процессоров с целевым энергопотреблением 35-45 Вт, в то время как остальные варианты получались путём варьирования числа ядер, частоты и напряжения, то с Haswell требования по потреблению были ещё более ужесточены. Теперь Intel считает наиболее привлекательным диапазон от 15 до 20 Вт. Таким образом, Haswell — ярко выраженная ультрамобильная микроархитектура, стоящая по уровню производительности на ступень выше Atom. Что же до десктопных модификаций Haswell, то это для Intel — побочный продукт. Конечно, получить из экономичного процессора обычный гораздо проще, чем выполнить это преобразование в обратную сторону. Но снятие ограничений по энергопотреблению и тепловыделению отнюдь не означает беспрепятственное масштабирование производительности. Так что насколько оправдает ожидания Haswell в своей десктопной ипостаси — вопрос не столь очевидный.

И здесь уместным будет вспомнить предыдущий цикл «так», процессоры с микроархитектурой Sandy Bridge. Они по сравнению со своими предшественниками поколения Westmere смогли обеспечить лишь примерно 15-процентный прирост производительности в десктопной среде именно потому, что разработчики стали смещать свои акценты на соотношение производительности и энергопотребления. Сейчас же разговор ведется и вовсе на другом языке: главные сильные стороны Haswell, по мнению производителя, — это превосходная экономичность и принципиально новый уровень графического быстродействия. Что же касается вычислительной производительности, то Intel почему-то не акцентирует на ней внимание, что вызывает всякие нехорошие подозрения. Только усугубляющиеся, если посмотреть на предварительные данные о быстродействии десктопных Haswell, которые к настоящему времени уже просочились в прессу.

Ждать выхода процессоров, построенных на микроархитектуре Haswell, осталось совсем недолго. И через несколько дней мы сможем дать развёрнутые ответы на любые вопросы. Однако перед этим уместно будет ознакомиться с теорией — она должна стать хоть и неприятным, но необходимым противоядием от слишком радужных иллюзий, которые вполне могли сформироваться в тягостном ожидании чего-то новенького.

⇡ Микроархитектура Haswell: тик или так

Честно говоря, вводная часть чрезмерно сгущает краски. Да, микроархитектура Haswell во многом действительно может считаться высокоэнергоэффективной, и разрабатывалась она в первую очередь с прицелом на мобильные применения. Однако Intel всё-таки не забывает о том, что принятая в компании бизнес-модель предполагает использование единого дизайна в обширной линейке продукции, включающей мобильные, десктопные и серверные компоненты. Это значит, что под модным фасадом низкого энергопотребления скрывается прочный фундамент, позволяющий направить Haswell в разные рыночные ниши. Иными словами, новая микроархитектура не потеряла своей универсальности. Путём манипулирования числом ядер, версиями графического движка, целевым уровнем энергопотребления, размером кеш-памяти и добавлением того или иного набора внешних интерфейсов из Haswell могут получаться разные по своей сути процессоры.

Впрочем, если касаться собственно микроархитектуры, то да, в ней на первом месте стоят нововведения, направленные на оптимизацию тепловых и энергетических режимов. Изменений же, способных поднять производительность, не так много, и на цикл разработки «так» они если и тянут, то с большим трудом. Действительно, когда Intel выпускала Nehalem или Sandy Bridge, перестройка затрагивала не только внутренние блоки вычислительных ядер, но и базовую концепцию процессорного дизайна. Каждый «так» казался чем-то действительно принципиально другим, а от степени новаторства захватывало дух. Но если посмотреть на обобщённую схему Haswell, то её легко перепутать с предшественником — Ivy Bridge.

Все функциональные блоки и принципы их объединения в процессоре остались теми же. Haswell наследует из прошлого все удачные технологии: турборежим, Hyper-Threading, кольцевую шину, но ничего нового к этому багажу не добавляет. Изменения есть лишь в недрах отдельных узлов. Причём инженерное вмешательство в глубинные слои микроархитектуры не слишком значительно. Исполнительный конвейер изменился не слишком сильно, его протяженность составляет те же 14-19 стадий, что и раньше. Фронтальная часть получила лишь отдельные косметические усовершенствования, а все сколько-нибудь значимые перемены касаются лишь механизма исполнения инструкций и поддержки новых наборов команд. Говоря о том, является ли Haswell более производительной микроархитектурой, нежели Ivy Bridge, Intel ссылается на улучшение быстродействия до 20-30 процентов, но следует иметь в виду, что эта оценка включает и выигрыш от использования новых команд AVX2, для которых длительный и непростой этап внедрения ещё впереди.

⇡ Экономичность: всё ради неё

Зато шагов, сделанных для улучшения экономичности процессорного дизайна, — хоть отбавляй. Львиная доля усилий разработчиков была потрачена на снижение энергопотребления, и, надо сказать, с точки зрения мобильных систем усилия эти прошли далеко не впустую. Ожидается, что системы на базе Haswell смогут работать от батареи примерно на 50 процентов дольше, чем аналогичные конфигурации на базе Ivy Bridge. В простое выигрыш Haswell по сравнению с процессорами предыдущего поколения составляет порядка 2-3 раз! А в состоянии готовности к работе при сохранении сетевых соединений (connected standby) общее потребление платформы по сравнению с системами на базе Sandy Bridge снизилось примерно в 20 раз.

Столь впечатляющий прогресс своими корнями уходит не в простое совершенствование технологического процесса, который на самом деле имеет лишь эволюционные отличия от 22-нм техпроцесса с трёхмерными транзисторами, используемого для производства Ivy Bridge. И уж тем более дело не в банальном увеличении количества зон процессорного кристалла, которые при отсутствии активности могут независимо друг от друга отключаться от питающей шины. Конечно, всё это вносит определённый вклад в экономичность Haswell, но подобные изменения происходят с каждым новым поколением интеловских процессоров, а качественный скачок случился только сейчас. Так что секрет успеха — в другом.

Вкратце: новые рубежи экономичности были достигнуты благодаря комплексу мероприятий, проведённых не столько с самим процессором, сколько с платформой и инфраструктурой в целом.

Во-первых, важную роль сыграла общая интеграция компонентов платформы: в процессорный кристалл перекочевала значительная часть схемы преобразователя питания, а для ультрамобильных применений был спроектирован специализированный SoC-вариант процессора, содержащий на той же подложке второй кристалл — набор системной логики.

Во-вторых, Intel провела значительную работу с основными производителями контроллеров, указав им на необходимость качественной поддержки состояний сна и глубокого сна. Попутно разработчики рассчитывают, наконец, добиться от производителей дисплейных матриц поддержки функции Panel Self Refresh, позволяющей сохранять изображение на экране без его постоянного обновления со стороны графического ядра.

В-третьих, на руку сыграла и операционная система Windows 8, ядро которой гораздо рачительнее относится к обработке прерываний, по возможности стараясь избегать разрозненных транзакций, пробуждающих процессор или устройства.

И наконец, в-четвёртых, в Haswell появился новый набор ACPI-состояний сна S0ix, похожих по уровню энергопотребления на S3/S4 (когда в пассив отправляются все составляющие платформы за исключением системной памяти), но со временем перевода системы в полностью рабочее состояние на уровне нескольких миллисекунд. Кроме того, добавились также и новые состояния простоя процессора C7 и далее, достигаемые при видимой работоспособности системы, но при которых с основной части CPU может быть полностью снято питающее напряжение.

Однако всё перечисленное в первую очередь касается мобильных платформ и длительности их работы от батареи. В настольных системах большинство из этих нововведений также имеет место, но для конечных пользователей они практически безразличны. Что же их затрагивает самым непосредственным образом, так это появление в процессоре Haswell новых зон, работающих на различных частотах. В Ivy Bridge таких зон было две: вычислительные ядра (вместе с кешем и системным агентом) и графическое ядро. Но это оказалось не лучшим решением с точки зрения экономичности, так как обращения графики к данным в L3-кеше приводили к выходу из энергосберегающих состояний всего процессора. Поэтому в Haswell Uncore-часть, объединяющая системный агент и кеш третьего уровня, получила свою собственную независимую частоту.

И это — отнюдь не позитивное изменение, а яркая иллюстрация тех приоритетов, которых придерживались инженеры Intel при разработке их нового дизайна. Асинхронная работа Uncore и вычислительных ядер приводит к тому, что кеш третьего уровня в Haswell имеет большую латентность, нежели у процессоров предыдущего поколения. Иными словами, ради улучшения экономичности Intel готова даже откатывать сделанные ранее для увеличения производительности шаги.

Но зато все меры, предпринятые Intel для снижения энергопотребления, позволяют компании значительно расширить спектр предлагаемых энергоэффективных процессоров Core. В мобильном сегменте ожидается появление обширной и включающей порядка двух десятков наименований U-серии, с характерным расчётным тепловыделением порядка 15 Вт. Кроме того, нас ожидает и Y-серия с тепловыделением на уровне 6-7 Вт. Эти цифры кажутся особенно впечатляющими, если принять во внимание, что речь идёт о тепловыделении сборки, включающей помимо процессорного ядра и кристалл набора логики.

⇡ Для тех, кто хотел побыстрее

Но всё-таки, увлёкшись идеями по переориентации процессоров Core на ультрамобильные ноутбуки-трансформеры и производительные планшеты, Intel не забыла о том, чтобы немного подрихтовать самое сердце своих процессоров. Хотя вычислительные ядра Haswell очень похожи на ядра Ivy Bridge, в них всё-таки можно обнаружить некоторое количество улучшений. Правда, сделаны эти улучшения совсем не из стремления поднять чистую производительность — количество обрабатываемых за такт инструкций. Причина их появления — внедрение в обиход новых инструкций AVX2 и желание увеличить эффективность работы технологии Hyper-Threading, которая должна будет компенсировать невозможность использования четырёх полноценных ядер в низковаттных процессорах. Но, к счастью, у сделанных нововведений есть и положительные побочные эффекты.

Передняя часть исполнительного конвейера Haswell осталась практически нетронутой. Новая микроархитектура, так же как и её предшественники, заточена под обработку четырёх инструкций за такт. Блок выборки инструкций и декодер имеют именно такую ширину. Остался без изменений и кеш инструкций первого уровня объёмом 32 Кбайт, а также введённый ещё в Ivy Bridge кеш для декодированных инструкций на полторы тысячи микроопераций. Преимуществ на этом этапе у Haswell перед прошлым дизайном есть только два. Во-первых, благодаря происходящему при каждом релизе нового процессорного дизайна увеличению размера всех внутренних буферов возросла точность работы блока предсказания переходов. Во-вторых, очередь уже декодированных инструкций получила явную оптимизацию под Hyper-Threading: её деление на два потока стало происходить динамически.

Собственно, отсутствие изменений в базовых алгоритмах выборки и декодирования инструкций и является явным указанием на то, что рассчитывать на увеличение темпа обработки инструкций в Haswell особенно не стоит. Более четырёх (или пяти в случае успешного срабатывания технологии macro-ops fusion) x86-команд эта архитектура переварить не может. И если ранее на цикле разработки «так» Intel делала нововведения, способные увеличить эффективность работы имеющихся декодеров, то теперь этого нет.

Заметные же изменения в микроархитектуре Haswell обнаруживаются, если двигаться по конвейеру глубже. Так, увеличение всех основных буферов коснулось не только предсказания переходов. Немаловажно, что при этом было увеличено окно внеочередного исполнения команд. Этим достигается некоторое улучшение возможностей по параллельной обработке инструкций одного потока, что в конечном итоге позволяет более плотно загружать работой исполнительные устройства (коих в Haswell стало не просто больше, а заметно больше).

Собственно, на фоне всех остальных достаточно жалких улучшений в потрохах микроархитектуры это, пожалуй, — главное достоинство нового микропроцессорного дизайна. Если в Ivy Bridge было предусмотрено всего шесть исполнительных портов, то в Haswell их стало восемь.

Таким образом, в теории Haswell может обрабатывать до восьми микроопераций за такт. Однако надо заметить, что три порта отведены на операции работы с памятью, то есть предназначаются для обслуживания вспомогательных микроопераций, возникающих при разборке x86-инструкций.

Поэтому первостепенное значение имеет появление отдельного порта для целочисленных операций и обработки ветвлений. Очевидно, предполагается, что со временем число используемых в программах 256-битных инструкций будет расти, и, чтобы они не блокировали работу самого обычного кода, его исполнение теперь может быть выделено на независимый порт. Такое «развязывание» портов по типам операций должно дать особенно сильный положительный эффект при одновременном исполнении одним ядром двух разнородных потоков с участием технологии Hyper-Threading. То есть мы вновь сталкиваемся с ростом её эффективности в Haswell.

Также в распоряжении процессора теперь оказалось суммарно четыре порта, способных работать с целочисленными инструкциями. А это значит, что самый ординарный целочисленный код может проходить через этап исполнения с тем же темпом, что и через декодер.

Впрочем, судя по общему подходу к проектированию новой микроархитектуры, Intel задумывалась о росте количества обрабатываемых за такт инструкций в последнюю очередь. Что же наверняка волновало разработчиков гораздо сильнее, так это работа с новыми командами из набора AVX2. В это множество инструкций входят 256-битные SIMD-команды для обработки целых чисел, разреженные операции с памятью и различные перестановки и сдвиги компонентов векторов. Но львиная и самая важная доля нового набора команд — принципиально новые вещественночисленные FMA-инструкции (Fused Multiply-Add), которые фактически одновременно включают в себя пару операций — умножение и сложение. Естественно, их выполнение старыми средствами вызвало бы значительные простои процессора, поэтому для них теперь сделано два отдельных порта и выделенные исполнительные устройства. В результате Haswell может выполнять по две сдвоенные FMA-инструкции за такт.

Таким образом, теоретически Haswell на AVX2-коде может показывать вдвое более высокую пиковую вещественночисленную производительность, нежели процессоры прошлых поколений. Хотя, на самом деле, если сопоставить скорость выполнения одной FMA-инструкции и раздельных инструкций умножения и сложения, то реальная величина ускорения окажется на уровне 60 процентов, что, конечно же, тоже очень неплохо.

В какой-то мере внедрение быстрого исполнения FMA-команд является ответом Intel на растущую популярность вычислений на графических процессорах. Набор AVX2 и имеющиеся аппаратные средства для его обработки делают Haswell отличной числодробилкой, а сами эти инструкции прекрасно вписываются в популярные вычислительные алгоритмы, используемые как в научных областях, так и при обработке различного мультимедийного контента.

Следовательно, процессоры Haswell всё-таки могут быть существенно производительнее своих предшественников. Но не за счёт более быстрого исполнения старого кода, а за счёт предоставления инструментов для лучшей реализации старых алгоритмов через новую систему инструкций. Это, естественно, требует определённых усилий от программистского сообщества, но зато не приводит к дополнительным затратам процессором электроэнергии, что отлично вписывается в ту генеральную линию, которой теперь придерживается Intel.

Желание сделать работу процессора с AVX2-инструкциями максимально гладкой заставило разработчиков Haswell задуматься об увеличении скорости работы кеш-памяти. Новые команды предполагают вдвое более быструю, чем ранее, обработку данных. Поэтому для поддержания баланса в новой микроархитектуре симметрично увеличена пропускная способность кеш-памяти первого и второго уровней. Подчеркнём, речь идёт именно о расширении полосы пропускания L1- и L2-кеша, латентность же кеш-памяти остаётся на том же уровне, что и раньше.

В результате кеш первого уровня стал способен отрабатывать два 32-байтных чтения и одну 32-байтную запись за такт. Кеш же второго уровня может принимать и отдавать за такт по 64 байта данных. И в том и в другом случае имеет место двукратное увеличение пропускной способности по сравнению с процессорными микроархитектурами прошлых поколений. Плюс к этому в Haswell, наконец, удалось ликвидировать все добавочные задержки, связанные с обращениями к невыровненным данным в L1-кеше.

К сожалению, при этом улучшения обошли кеш третьего уровня, который теперь работает на собственной частоте асинхронно с вычислительными ядрами. И хотя его частота близка к частоте основной части процессора, асинхронность вызывает увеличение латентности. Никакой же компенсации в виде роста пропускной способности не последовало. Внутрипроцессорная кольцевая шина в Haswell перенесена из Ivy Bridge без каких-либо изменений, так что вытянуть из L3-кеша более 32 байт данных за такт невозможно при всём желании.

Резюмируя, отметим, что хотя Haswell по микроархитектуре вычислительных ядер и похож на Ivy Bridge, улучшения, способные увеличить его скорость работы на обычном коде, всё-таки есть. Фактически между всеми этапами конвейера проведён серьёзный ребаланс, приведший к тому, что, хотя скорость выборки и декодирования инструкций и осталась практически той же, исполнение этих инструкций теперь может происходить ощутимо быстрее и с большей степенью параллелизма. Но отразится ли это на реальной производительности Haswell, зависит от того, действительно ли именно исполнение, а не декодирование было бутылочным горлышком в прошлых версиях микроархитектуры Core.

⇡ Интегрированная графика: выходим на уровень GeForce GT 650M

Тем не менее, для того, чтобы ощутить возросшую мощь Haswell с 100-процентной вероятностью, совершенно не обязательно переписывать под AVX2 имеющиеся программы. Дело в том, что в этом процессоре есть важная часть, занимающая примерно 30 процентов площади кристалла, над которой инженеры Intel поработали очень усердно. Это — интегрированное графическое ядро. Учитывая первостепенность мобильных применений своих процессоров, Intel в последние несколько лет проводит последовательные улучшения встраиваемой в них графики и стремится к тому, чтобы её собственный ускоритель смотрелся не хуже решений других разработчиков, включая и тех, которые графическими решениями занимаются целенаправленно. В Ivy Bridge мы уже видели почти двукратный рост графической производительности по сравнению с процессорами предыдущего поколения, произошедший одновременно с внедрением поддержки всех современных версий программных интерфейсов. Микроархитектура Haswell обещает поднять скорость работы графического ядра ещё примерно вдвое.

Планы у разработчиков, как видим, были грандиозные, но при этом, как и в вычислительных ядрах, в данном случае Intel смогла обойтись без внесения глубоких архитектурных изменений. Структура графического ядра осталось старой, а рост производительности обеспечивается в чистом виде экстенсивными методами. Новую же архитектуру видеоускорителя Intel обещает лишь в 2014 году — в следующем поколении процессоров с кодовым именем Broadwell. В результате, как и вычислительные ядра, графическое ядро Haswell навевает мысли о том, что «так» и из нового процессора получился не слишком правдоподобный. Впрочем, это не умаляет достигнутого роста быстродействия, который, безусловно, заслуживает того, чтобы познакомиться с его источниками несколько подробнее. Тем более что в новом поколении Intel HD Graphics место нашли весьма занимательные инженерные решения.

Если не считать отдельных оптимизаций графического конвейера, направленных на перенесение части нагрузки с драйвера на аппаратные блоки и на увеличение производительности большинства специализированных функциональных блоков, выполняющих в конвейере 3D-рендеринга подготовительные операции, новое графическое ядро сильно похоже на ядро из процессоров предыдущего поколения с добавленной поддержкой DirectX 11.1. Главное же преимущество нового дизайна — наличие существенно большего количества универсальных исполнительных устройств. Если максимальная версия графики Ivy Bridge располагала 16 исполнительными устройствами (включающими по 4 ALU каждое), то количество исполнительных устройств в графическом ядре Haswell может доходить до 40 штук.

Однако при этом Intel решила провести более явную сегментацию и на основе единого дизайна сделать несколько вариантов графики: GT1, GT2, GT3 и GT3e. Базовая версия — это GT2 с 20 исполнительными устройствами. Она предназначается для большинства десктопных моделей процессоров и предлагает на 4 устройства больше, чем старшая графика процессоров поколения Ivy Bridge. Однако её урезанная версия, GT1, имеет лишь 6 исполнительных устройств и мало отличается от графики, уже присутствующей в существующих процессорах Pentium и Celeron. Максимальный же вариант, GT3, который располагает 40 исполнительными устройствами, представляет собой GT2 с удвоенным исполнительным кластером. Такая прокачанная версия видеоускорителя нацеливается на большинство мобильных вариантов Haswell, включая в первую очередь процессоры для ультрабуков. Двух с половиной кратное увеличение количества исполнительных устройств и должно, по замыслу разработчиков, обеспечить двукратный рост производительности графики. Однако такая производительная версия видеодвижка, GT3, в настольные компьютеры не попадёт. А это значит, что у десктопной интегрированной графики Intel прирост производительности будет не кратный, а лишь примерно 30-процентный.

Любопытно, что на самом деле полупроводниковый кристалл Haswell будет иметь на одно или два исполнительных устройства больше, чем предусмотрено дизайном. Дополнительные устройства играют роль запасных, они нужны для подмены нерабочих блоков и для снижения количества бракованных процессоров.

Увеличение мощности исполнительного кластера графического ядра заставило разработчиков дизайна задуматься и о том, чтобы узким местом не стал этап наложения текстур. Поэтому скорость работы текстурного блока в Haswell была симметрично увеличена. Intel обещает четырёхкратный рост скорости текстурирования по сравнению с графикой Ivy Bridge, и это — вполне достаточное усиление, если учесть рост мощности остальной части движка.

Впрочем, несмотря на все принятые меры, даже производительность GT3 показалась Intel недостаточной, чтобы привлечь на сторону собственных интегрированных ядер самых требовательных пользователей. Поэтому для производительных игровых мобильных систем Intel создала специализированную заряженную модификацию GT3e. В процессорах с таким ядром, которые будут образовывать отдельную мобильную H-серию, встроенное графическое ядро GT3 будет дополняться быстрой eDRAM-памятью объёмом 128 Мбайт и 512-битной шиной. Идея состоит в том, что существенные ограничения на скорость встраиваемых видеоядер накладывает недостаточная пропускная способность системной памяти, которая в таких случаях играет также и роль видеопамяти. eDRAM же будет устанавливаться на одну подложку с процессорным ядром и выполнять роль L4-кеша, обеспечивая пропускную способность порядка 64 Гбайт/с. Однако никакого специализированного интерфейса между графическим ядром и eDRAM не предусматривается, так что такой L4-кеш будет буферизировать все обращения в память, а не только инициированные графическим ядром. Тем не менее Intel ожидает, что именно эта добавка сможет вывести Haswell по графической производительности на один уровень с NVIDIA GeForce GT 650M.

Но следует понимать, что добавление к процессорному кристаллу дополнительного кристалла eDRAM заметно увеличивает энергопотребление и стоимость процессора, поэтому CPU с GT3e предполагается использовать исключительно в высокопроизводительных геймерских ноутбуках, где речь об экономичности, компактности и бюджетности не идёт. А значит, компания AMD со своими APU поколения Richland пока что не будет ощущать особого давления со стороны конкурента. И особенно это касается десктопной среды: предлагать широкий ассортимент процессоров с производительными графическими ядрами для этого рыночного сегмента Intel не считает необходимым.

Впрочем, даже пользователи настольных систем смогут оценить прочие преимущества графического ядра нового поколения, например расширенные возможности по подключению мониторов. В Haswell поддерживается работа до трёх независимых дисплеев, причем все три подключения могут быть цифровыми. Благодаря же внедрению совместимости с последними версиями интерфейсов HDMI и DisplayPort, максимальные поддерживаемые разрешения достигли величин 4Kx2K.

Без улучшений не осталось и одно из любимых детищ Intel — встроенный в графическое ядро аппаратный видеокодер Quick Sync. Разработчики рассматривают его как один из путей снижения энергопотребления процессоров, так как Quick Sync позволяет высвобождать вычислительные ядра от энергоёмких и весьма распространённых задач кодирования и декодирования видео, перенося их выполнение на специализированный и экономичный узел. Поэтому в каждой новой версии процессорного дизайна производительность Quick Sync поднимается, а число поддерживаемых этой технологией форматов растёт. Так, Haswell в дополнение к уже освоенным форматам будет способен на аппаратном уровне работать с SVC (Scalable Video Coding — производная AVC H.264), декодировать MJPEG (motion JPEG) и кодировать видео в формате MPEG2. При этом будет обеспечена полноценная совместимость при кодировании и декодировании с видео в разрешении 4K (4096x2304, 4096x2160 и 3840x2160), которое в настоящее время приобретает всё большую популярность.

Возросла и чистая производительность кодера Quick Sync. Причём теперь ему присуща не только высокая пропускная способность, но и низкая латентность, открывающая аппаратному кодированию путь в телеконференции. Скорость же кодирования в Haswell заметно выше, чем у Ivy Bridge, однако в разных версиях графического ядра она различается, причём в разы. Зато качество получаемого при аппаратном кодировании видео улучшилось в любых модификациях графики. Обновлённая технология Quick Sync должна давать лучшее качество кодированного изображения, чем Ivy Bridge, даже при одинаковом битрейте.

⇡ Заключение

Очевидно, новая микроархитектура Haswell может вселять как надежды на светлое будущее, так и разочарование уровнем достигнутого прогресса. Всё зависит от того, на что вы рассчитываете. К сожалению, интеловская схема «тик-так» незримо подталкивает к завышению ожиданий, ведь Haswell относится к циклу разработки «так», то есть должен восприниматься как новое поколение микроархитектуры. Но принципиальных и революционных улучшений в нём сделано не так много. Речь идёт не о кардинальной переработке процессорного дизайна, а лишь о некотором наборе улучшений и усовершенствований. Конечно, улучшений этих немало, и можно даже говорить о переходе количества в качество. Но, как бы то ни было, Intel фактически форсировала имеющуюся микроархитектуру Ivy Bridge, а не предложила что-то принципиально новое. Причём основной упор при выполненной переработке делался не на поиски путей увеличения вычислительной производительности, а на улучшение энергоэффективности и развитие графических возможностей.

С точки же зрения традиционно процессорной парадигмы микроархитектура Haswell предлагает лишь поддержку нового набора инструкций AVX2, лучший параллелизм на уровне исполнения инструкций и возросшую пропускную способность кеш-памяти первого и второго уровней. Достаточно ли таких изменений для того, чтобы соответствовать ожиданиям приверженцев классических персональных компьютеров? Вряд ли. Поэтому большинство энтузиастов, увидев лишь незначительный прирост вычислительного быстродействия, лежащий предположительно в рамках 5-15 процентов, скорее всего, новыми процессорами будут недовольны. И это означает, что никакого всплеска интереса к привычным десктопам и ноутбукам не предвидится и с выходом нового семейства процессоров.

Но Intel, несмотря на всё это, может гордиться выполненной работой. Поставленную перед собой задачу компания решила. Дизайн Haswell получился настолько энергоэффективным и сбалансированным, что эти процессоры, вне всяких сомнений, смогут занять достойное место в лакомом для производителя подвиде мобильных устройств — производительных планшетах и ноутбуках-трансформерах. Намечающийся на этом рынке бум компания теперь точно не прозевает: в ответ на поползновения когорты приверженцев архитектуры ARM, а также на новые APU компании AMD у Intel теперь имеется хорошая домашняя заготовка. Ведь микроархитектура Haswell позволяет создавать модификации дизайна, которые обладают показателями энергопотребления, выражающимися в однозначных числах, и представляют при этом SoC-сборки, включающие не только процессор, но и набор системной логики.

На этом мы пока не ставим финальную точку. Данный материал лишь открывает цикл статей о процессорах с новой микроархитектурой. В самое ближайшее время мы сможем более подробно и с реальными процессорами в руках познакомиться как с десктопными, так и с мобильными воплощениями микроархитектуры Haswell. И тогда, быть может, наши выводы, сделанные лишь на основе знакомства с документацией, несколько изменятся. И в это действительно хочется верить…

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

ВведениеТак уж повелось, что каждый год компания Intel обновляет микроархитектуру своих процессоров, нацеленных на использование в общеупотребительных персональных компьютерах. Этот график стал уже настолько привычен, что воспринимается как что-то само собой разумеющееся. Sandy Bridge были выпущены в начале 2011 года, Ivу Bridge появились в апреле 2012, а актуальные на данный момент Haswell были представлены 4 июня прошлого года. Учитывая сложившийся распорядок, рынок уже вовсю ожидает процессоры нового поколения – Broadwell. Однако с ними всё сложилось не слишком удачно. Внедрение нового 14-нм техпроцесса, который Intel должна использовать для производства Broadwell, натолкнулось на сложности производственного характера. Поэтому изначальный план, предполагавший появление нового поколения процессорного дизайна в середине этого года, пришлось пересмотреть. Согласно имеющимся актуальным данным, анонс мобильных энергоэффективных вариантов Broadwell произойдёт накануне Нового года, а основанные на этом дизайне процессоры для массовых настольных и мобильных компьютеров станут доступны лишь в следующем году.

В сложившейся ситуации Intel решила как-то скрасить незапланированное затянувшееся ожидание новинок и придумала акцию, получившую кодовое название Haswell Refresh. Её суть заключается в том, что вместо выхода новых процессоров Broadwell компания предлагает усовершенствованные модели старых, производительность которых улучшена не новой микроархитектурой, а увеличенными тактовыми частотами. Официальный анонс CPU, входящих во множество Haswell Refresh, был назначен на 11 мая, и он уже состоялся. В интеловском прайс-листе появилось 42 новые позиции, 24 из которых нацеливаются на настольные системы различных классов. В этом обзоре мы познакомимся с теми из обновлённых Haswell, которые предназначаются для ординарных десктопов и относятся к семействам Core i7, Core i5 и Core i3.

Подробнее о Haswell Refresh для десктопов

Итак, говоря о Haswell Refresh, Intel фактически имеет в виду простое повышение частот своих LGA 1150 процессоров семейства Haswell. В выходе таких обновлённых продуктов нет ничего необычного – компания постепенно повышала частоты своих процессоров между анонсами новых микроархитектур и раньше, просто до этого такие события были разрознены, и им не уделялось столько внимания. Отличительная же особенность Haswell Refresh в том, что рост частот происходит не у отдельных моделей, а у всей линейки целиком, снизу доверху.

Причём, столько внимания Haswell Refresh уделяется не из-за их какой-то новизны или заметного увеличения производительности. Вся шумиха – искусственна, её специально генерирует сама Intel, пытаясь создать впечатление непрекращающихся инноваций даже несмотря на перенос анонса Broadwell на более поздний срок. Другими словами, выход Haswell Refresh – вполне ординарное обновление, а свежие процессоры отличаются от старых, присутствующих на рынке уже почти год Haswell, только возросшей на смешные 100 МГц частотой. То есть, речь идёт о незначительном приросте в производительности, составляющем порядка 2-3 процентов, и не более того.

К счастью, за этот небольшой прирост быстродействия покупатели не должны ничего платить. Новые процессоры Haswell Refresh заняли старые позиции в прайс-листе, вытеснив оттуда Haswell образца прошлого года. Если говорить конкретно о предложениях для настольных компьютеров, то происходящая замена выглядит следующим образом:

Необходимо подчеркнуть, что рост тактовой частоты происходит в рамках установленных ранее тепловых пакетов: 84 Вт для Core i7 и Core i5 и 54 Вт – для Core i3. Однако при этом в основе Haswell Refresh остаются точно такие же полупроводниковые кристаллы, как и использовались ранее. Улучшение частотного потенциала обеспечивается исключительно совершенствованием интеловского 22-нм технологического процесса, ревизия же ядра в новинках не меняется и сохраняет номер C0. А это означает, что принципиальных улучшений в тепловых и электрических характеристиках, как и в каких-то иных нюансах работы новых процессоров, ожидать не следует.



Процессоры Haswell Refresh для настольных систем


Абсолютно также как предшественники выглядят процессоры Haswell Refresh и внешне.



Слева – обычный Haswell, справа – Haswell Refresh


Единственное связанное с выходом Haswell Refresh интересное и принципиально важное изменение коснётся оверклокерских процессоров K-серии, полной информации о которых пока нет в силу того, что они будут представлены несколько позже, предположительно 2 июня. Пока Intel продолжит предлагать для оверклокеров старые модели Core i7-4770K и Core i5-4670K, но те процессоры, которые придут им на смену, заслуживают отдельного рассказа.

Дело в том, что в разновидностях Haswell Refresh со свободными множителями, имеющих собственное собирательное кодовое имя Devil’s Canyon, мы увидим не только возросшие паспортные частоты. Intel собирается сделать эти процессоры более привлекательными для разгона, для чего планирует внести серьёзные изменения в их упаковку. Теплопроводящий материал, расположенный между процессорным кристаллом и крышкой-теплораспределителем будет заменён на более эффективный, а сама крышка будет изготавливаться из другого сплава с лучшей теплопроводностью. По предварительным данным, семейство Devil’s Canyon будет состоять из двух разблокированных LGA 1150 процессоров: Core i7-4790K и Core i5-4690K. Причём, они получат более высокий, чем у обычных Haswell Refresh, тепловой пакет и заметно повышенные тактовые частоты даже в номинальном режиме.

К сожалению, это пока всё, что известно о Devil’s Canyon, но когда образцы этих CPU появятся в нашей лаборатории, мы непременно поделимся исчерпывающей информацией о них в наших обзорах. Сегодня же речь будет идти только об обычных десктопных Haswell Refresh со стандартным уровнем тепловыделения, которые уже можно купить в магазинах.

В серии Core i7 новинка пока только одна:


Core i7-4790 повышает тактовую частоту старшей линейки процессоров для платформы LGA 1150 на 100 МГц, обгоняя, таким образом, и оверклокерский Core i7-4770K, и обычный Core i7-4771. В остальном, это типичный Core i7 поколения Haswell: он имеет четыре ядра, поддерживает Hyper-Threading, располагает вместительным кэшем третьего уровня объёмом 8 Мбайт. Графическое ядро, как и у предшественников, относится к классу GT2, то есть располагает 20 исполнительными устройствами. Следует отметить, что благодаря технологии Turbo Boost 2.0 типичной частотой работы для Core i7-4790 является 3.8 ГГц.



Core i7-4790


Полный набор технологий обеспечения безопасности, включая vPro, TXT и VT-d, этим процессором также поддерживается в полном объёме. Иными словами, Core i7-4790 – это новый флагман для платформы LGA 1150, но без поддержки разгона.

В серии Core i5 появилась три новых процессора Haswell Refresh:



У этих процессоров частоты по сравнению с предшественниками повысились тоже всего на 100 МГц. Но этого оказалось достаточно для того, чтобы старший Core i5-4690 стал быстрее Core i5-4670K и перехватил лидерство в этой линейке. Остальные же процессоры органично разместились в свободных ранее частотных слотах. Прочие их характеристики не поменялись. Hyper-Threading в серии Core i5 не поддерживается, L3-кэш сокращён до 6 Мбайт, используемое графическое ядро – GT2.



Core i5-4690



Core i5-4590



Core i5-4460


Младший процессор Core i5-4460 занимает в серии особое место: в нём отключены технологии обеспечения безопасности vPro и TXT, а также не поддерживаются инструкции для работы с транзакционной памятью. Технология Turbo Boost 2.0 делает типичной рабочей частотой для Core i5-4690 – 3,7 ГГц, для Core i5-4590 – 3,5 ГГц и для Core i5-4460 – 3,2 ГГц.

Серия Core i3 с выходом Haswell Refresh приросла ещё тремя модификациями:



Здесь также произошло 100-мегагерцовое увеличение тактовых частот при сохранении всех остальных характеристик. Процессоры Core i3, в отличие от старших моделей, двухъядерные, но они поддерживают технологию виртуальной многопоточности Hyper-Threading. За счёт этого они обладают меньшим расчётным тепловыделением на уровне 54, а не 84 Вт. Следует отметить, что в линейке Core i3 на момент анонса Haswell Refresh уже не было свободных частотных слотов, поэтому вышло так, что модель Core i3-4350 полностью совпала по характеристикам с Core i3-4340. Единственное отличие новой модификации – более низкая цена.



Core i3-4360



Core i3-4350



Core i3-4150


В процессорах Core i3-4360 и Core i3-4350 размер кэш-памяти третьего уровня составляет 4 Мбайт, а у Core i3-4150 кэш уменьшен до 3 Мбайт. Хуже во младшей модели и графическое ядро. Хотя формально все Core i3 снабжены графикой GT2, в Core i3-4150 количество исполнительных устройств GPU уменьшено с 20 до 16.

Любые LGA 1150 процессоры Haswell Refresh никаких дополнительных условий на материнские платы не накладывают. Несмотря на то, что к их появлению приурочено и обновление платформы с её переводом на новые наборы логики девятой серии (Z97 и H97), все новые CPU без проблем работают в старых LGA 1150-материнках с чипсетами восьмой серии. Для их правильного определения платами, выпущенными в прошлом году, требуется только обновление BIOS.

Что касается разгонных возможностей, то у Haswell Refresh, вышедших к настоящему моменту, их вообще нет ни в каком объёме. Увеличение частот выше номинальных сменой множителя невозможно, разгон же по шине крайне ограничен. Фактически, предел, до которого можно разогнать базовый тактовый генератор, составляет порядка 105-110 МГц. То есть, приобретение Haswell Refresh с целью эксплуатации их в нештатных режимах какого бы то ни было смысла лишено. Впрочем, разгон памяти до уровня DDR3-2400 неоверклокерские процессоры для платформы LGA 1150 всё же позволяют.

Как мы тестировали

Новые процессоры, относящиеся к множеству Haswell Refresh, мы сравнили с их предшественниками, ординарными Haswell, которые уже почти год доступны в продаже. В результате, список задействованных в тестировании аппаратных компонентов выглядит следующим образом:

Процессоры:

Intel Core i7-4790 (Haswell, 4 ядра + HT, 3,6-4,0 ГГц, 4x256 Кбайт L2, 8 Мбайт L3);
Intel Core i7-4770K (Haswell, 4 ядра + HT, 3,5-3,9 ГГц, 4x256 Кбайт L2, 8 Мбайт L3);
Intel Core i5-4690 (Haswell, 4 ядра, 3,5-3,9 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4670K (Haswell, 4 ядра, 3,4-3,8 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4590 (Haswell, 4 ядра, 3,3-3,7 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4570 (Haswell, 4 ядра, 3,2-3,6 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4460 (Haswell, 4 ядра, 3,2-3,4 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4440 (Haswell, 4 ядра, 3,1-3,3 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i3-4360 (Haswell, 2 ядра + HT, 3,7 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4350 (Haswell, 2 ядра + HT, 3,6 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4340 (Haswell, 2 ядра + HT, 3,6 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4150 (Haswell, 2 ядра + HT, 3,5 ГГц, 2x256 Кбайт L2, 3 Мбайт L3);
Intel Core i3-4130 (Haswell, 2 ядра + HT, 3,4 ГГц, 2x256 Кбайт L2, 3 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнская плата: Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX).
Видеокарта: NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
Дисковая подсистема: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8 Enterprise x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.0.13;
Intel Management Engine Driver 10.0.0.1204;
Intel Rapid Storage Technology 13.0.3.1001;
NVIDIA GeForce Driver 335.23.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. Недавно этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014.



Результаты, отображённые на диаграмме, вполне ожидаемы. Учитывая, что в процессорах Haswell Refresh нет никаких усовершенствований и оптимизаций на уровне микроархитектуры, всё решает тактовая частота. А, поскольку в новых CPU она возросла всего на 100 МГц, отличия в показателях производительности старых Haswell и представителей множества Haswell Refresh, приходящих им на смену, составляет в среднем 2,5 процента. Конкретнее: Core i7-4790 обгоняет Core i7-4771 (он же Core i7-4770K) на 1,8 процента; Core i5-4690 превосходит Core i5-4670 на 2,3 процента; Core i5-4590 опережает Core i5-4570 на 2,3 процента, Core i5-4460 быстрее Core i5-4440 на 2,7 процента, Core i3-4360 превосходит Core i3-4340 на 3,1 процента, а Core i3-4150 обгоняет Core i3-4130 на 2,3 процента.

Более глубокое понимание результатов SYSmark 2014 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.




Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.





















Мы не стали загружать обзор большим количеством игровых тестов, так как прирост производительности, который обеспечивают процессоры семейства Haswell Refresh, не слишком заметен. Тем не менее, на приведённых графиках можно отметить несколько разнообразных вариантов того, как складывается игровая производительность.

Так, Batman: Arkham Origin – игра, в которой производительности любых интеловских процессоров оказывается достаточно для того, чтобы полностью загрузить флагманскую графическую карту NVIDIA GeForce GTX 780 Ti. В результате, в ней мы видим крайне незначительное влияние выбора CPU на результат, а новые Haswell Refresh вообще ничем не выделяются на фоне предшественников.

Civilization V: Brave New World – стратегическая игра, где выполняются активные расчёты на CPU, однако и здесь слишком мощные процессоры оказываются ни к чему. Начиная с Core i5-4570 и выше прирост производительности почти незаметный. Однако и ниже этой своеобразной границы преимущество Haswell Refresh над равноценными предшественниками составляет в районе 3 процентов.

Metro: Last Light – весьма процессорозависимый шутера, но при максимальных настройках качества (в первую очередь, из-за тесселяции), частота кадров всё равно упирается в мощность видеокарты. Зато при уменьшении разрешения можно увидеть небольшой эффект от увеличения частоты в свежеанонсированных Haswell Refresh. Его масштаб стандартен – около 2 процентов.

В Thief всё выглядит ещё интереснее. Эта – одна из немногих игр, отрицательно относящихся к технологии Hyper-Threading в четырёхъядерных процессорах. Она оптимизирована под четыре потока, и дополнительные виртуальные ядра в Core i7 только снижают производительность. Если же говорить об эффекте, который даёт подмена Haswell на Haswell Refresh, то он вновь незначителен: не более 3 процентов при пониженном разрешении и не более 1 процента при максимальных настройках графики.

Тесты в приложениях

В Autodesk 3ds max 2014 мы измеряем скорость рендеринга в mental ray специально подготовленной сложной сцены.



Производительность в новом Adobe Premiere Pro CC тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Измерение производительности в новом Adobe Photoshop CC мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.0, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 использовался тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2431, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Никакие приложения не позволяют выявить заметные преимущества процессоров Haswell Rafresh над их предшественниками. Это вполне естественно. Единственное изменение в новых CPU – повышенная частота. Так что заметному приросту быстродействия взяться просто неоткуда. Результаты новых Core i7-4790, Core i5-4690, Core i5-4590, Core i5-4460, Core i3-4360, Core i3-4350 и Core i3-4150 лучше, чем у давно присутствующих на рынке предложений того же класса и той же стоимости максимум на 3 процента.

Энергопотребление

Изменения в производительности, преподнесённые Haswell Refresh, совершенно не впечатляют. Никаких же других улучшений в новых модификациях процессоров, исходя из того, что они основываются на полупроводниковом кристалле старой ревизии, быть не должно. Тем не менее, остаётся небольшая надежда на какие-то улучшения в тепловых и энергетических характеристиках, которые могли произойти за счёт совершенствования производственного технологического процесса. Проверим.

На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное на выходе из розетки, в которую подключен блок питания тестовой системы, и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. В суммарный показатель автоматически включается и КПД самого блока питания, однако учитывая, что используемая нами модель БП, Corsair AX760i, имеет сертификат 80 Plus Platinum, его влияние должно быть минимально. Для правильной оценки энергопотребления мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.

В первую очередь измерению подверглось потребление в состоянии простоя.



Здесь все процессоры проявили редкостное единодушие. Оно и понятно: в простое Haswell переходят в энергосберегающие состояния и снижают своё энергопотребление практически до нулевых величин. Поэтому те числа, которые приведены на диаграмме, больше характеризуют потребление остальной части тестовой платформы.

Затем мы измерили максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, базирующейся на пакете Linpack.



Приведённая диаграмма очень явно демонстрирует отсутствие каких-либо улучшений в энергопотреблении у процессоров Haswell Refresh. Новые и более быстрые модели требуют электроэнергии больше, чем их предшественники. При этом проведённый в новых модификациях CPU 100-мегагерцовый разгон выливается примерно в 5-процентный рост энергопотребления. Заметим, что, несмотря на это, Intel не сочла нужным увеличивать для Haswell границы теплового пакета. Иными словами, тепловыделение любых Core i7 и Core i5 должно вписываться в 84-ваттные рамки, а Core i3 – в 54-ваттные.

Учитывая, что энергопотребление, инициируемое базирующейся на пакете Linpack утилитой LinX, сильно превышает средний реалистичный уровень, мы измерили потребление и при более «приземлённой» нагрузке – перекодировании видеоролика при помощи 64-битной версии кодека x264 версии r2431.



В целом, картина здесь точно такая же, как и при нагрузке, создаваемой LinX. Меньше лишь абсолютные значения энергопотребления. Тем не менее, процессоры Haswell Refresh потребляют больше своих предшественников одного класса на те же 5 процентов. Всё это означает лишь одно: никаких улучшений в потреблении новых моделей Haswell не сделано.

Нет никаких явных изменений и в температурном режиме новинок. Очевидно, что в обычных Haswell Refresh теплопроводящий материал под крышкой остался таким же неудачным, что и раньше. Температура ядер при возникновении нагрузки у новых процессоров возрастает практически моментально и держится на высоком уровне даже в том случае, если в системе установлен эффективный кулер. Например, в нашем случае, при использовании кулера Noctua NH-U14S, старший из Haswell Refresh, Core i7-4790 при работе утилиты LinX очень быстро нагревался до 84 градусов. И это без всякого разгона, в номинальном режиме!



Напомним, предельная температура, при которой процессоры семейства Haswell включают троттлинг, – 100 градусов.

Выводы

Подводя итог, мы вынуждены констатировать, что громкое название Haswell Refresh получили совершенно ординарные процессоры, которые своим выходом не привносят практически ничего нового. Для их выпуска Intel не стала проделывать никакой инженерной работы. Поэтому, потребительские качества свежих CPU для платформы LGA 1150 практически не отличаются от того, что предлагалось раньше. Количество ядер, объём кэш-памяти, тип встроенного графического ядра, набор поддерживаемых технологий – всё осталось неизменным. Не было сделано никаких оптимизаций и на уровне полупроводникового кристалла, поэтому тепловыделение и энергопотребление Haswell Refresh осталось на типичном для Haswell уровне.

Единственное, где можно увидеть хоть какое-то движение вперёд – это тактовые частоты. Однако, учитывая, что рост частот не подкрепляется никакими технологическими или инженерными улучшениями, а носит характер лишь простого разгона старых моделей, их увеличение оказалось крайне слабым. Фактически, в рамках Haswell Refresh Intel нарастила скорость работы своих процессоров на минимально возможную дельту – на 100 МГц. Соответственно точно такой же, минимальный, прирост в производительности мы увидели и в процессе тестирования. Новые процессоры Haswell Refresh оказались быстрее старых Haswell на 2-3 процента и не более того.

Всё это означает, что выход Haswell Refresh может быть интересен только в том случае, если вы ещё не мигрировали на платформу LGA 1150. Учитывая, что стоимость новых моделей не выше, чем у старых, при покупке нового компьютера теперь вполне естественно спрашивать в магазинах именно новые модификации процессоров. А если у вашего любимого поставщика Haswell Refresh в прайс-листе пока отсутствуют, лучше немного повременить с покупкой, но впоследствии получить чуть более высокую производительность за те же деньги.

И, кроме того, не забывайте, что примерно через три недели нас ожидает выход ещё пары процессоров, формально относящихся к числу обновлённых Haswell, Core i7-4790K и Core i5-4690K. Эти CPU, имеющие собственное кодовое имя Devil’s Canyon, в отличие от рассмотренных сегодня моделей, обещают стать отличным подарком для энтузиастов. В них появятся и заметно улучшенные тактовые частоты, и понизившиеся рабочие температуры, и лучший разгон. Но не будем забегать вперёд: полный обзор Core i7-4790K и Core i5-4690K вы сможете прочитать на нашем сайте несколько позднее.

«Увлекающиеся практикой без науки - словно кормчий, ступающий на корабль без руля или компаса; он никогда не уверен, куда плывет. Всегда практика должна быть воздвигнута на хорошей теории…» (Леонардо да Винчи)

Статьи, посвящённые микроархитектуре принципиально новых процессоров Intel , обычно начинаются с отсылки к принятой в компании с 2007 года модели разработки «тик-так». Суть ее заключается в том, что разработка новых процессорных дизайнов и перевод производства на более совершенные технологические нормы чередуются друг с другом. Прошлая микроархитектура, Ivy Bridge, в этой классификации была «тиком», новая же, Haswell, - это «так». То есть в лице Haswell , по идее, мы должны увидеть кардинально обновлённый изнутри процессор, но выпускаемый по уже привычной 22-нм технологии с трёхмерными транзисторами.

Именно поэтому с предстоящим выходом Haswell связаны такие большие ожидания. Рынок персональных компьютеров находится в застое. Конкуренция между производителями x86-процессоров в высокопроизводительном сегменте сошла на нет, а сами настольные компьютеры потихоньку сдают свои позиции под натиском мобильных устройств. Не исправило этой ситуации даже появление операционной системы Windows 8 - ей не только не удалось вернуть былой интерес к персональным компьютерам, более того, у многих адептов традиционных форм-факторов она вызвала стойкую неприязнь. И теперь все энтузиасты ждут революции от Intel, надеясь на качественный скачок, который бы несмотря ни на что пробудил интерес к потерявшей былую динамику платформе x86. Кто-то верит, что классические десктопы и ноутбуки могут вновь сделаться модной тенденцией, а кто-то ожидает, что появление новой линейки процессоров хотя бы подтолкнёт владельцев уже имеющихся систем к их модернизации. Иными словами, Haswell в глазах энтузиастов производительных персональных компьютеров - это чуть ли не последняя надежда на оживление близкого сердцу сегмента рынка.

Однако у Intel на этот счёт, похоже, мнение совсем иное. Остывание интереса к производительным персональным компьютерам чувствуют и в компании, но, с учетом сложившейся конъюнктуры, планируется не пытаться разогревать старые рынки, а взяться за завоевание новых. Корректировке подвергается вся генеральная линия. Intel не намерена продолжать активно бороться за честь традиционных и привычных многим систем, а вместо этого она хочет заниматься внесением изменений в архитектуру x86 и имеющиеся продукты с тем, чтобы приспособить их для тех классов мобильных устройств, которые находятся сейчас на пике популярности. Отчасти этой цели служат начавшиеся коренные преобразования в хозяйстве Atom: активное продвижение процессоров этого класса в смартфоны и планшеты, а также подготовка новой микроархитектуры Silvermont. Но параллельно метаморфозы будут происходить и с процессорной линейкой Core, которая по замыслу разработчиков должна стать ещё более мобильной. И Haswell - хотя уже не первая, но, наверное, самая заметная веха на этом пути.


Все презентации и материалы для прессы, посвящённые перспективным процессорам, на первых же страницах рассказывают нам о том, что Haswell в первую очередь нацеливается на ультрабуки и ультрапортативные ноутбуки-трансформеры, которые легким движением руки превращаются в планшеты. И это как нельзя лучше отражает ту цель, которая стояла перед разработчиками новой микроархитектуры. Если на этапе создания микроархитектур Sandy Bridge и Ivy Bridge инженеры работали над дизайном процессоров с целевым энергопотреблением 35–45 Вт, в то время как остальные варианты получались путём варьирования числа ядер, частоты и напряжения, то с Haswell требования по потреблению были ещё более ужесточены. Теперь Intel считает наиболее привлекательным диапазон от 15 до 20 Вт. Таким образом, Haswell - ярко выраженная ультрамобильная микроархитектура, стоящая по уровню производительности на ступень выше Atom. Что же до десктопных модификаций Haswell, то это для Intel - побочный продукт. Конечно, получить из экономичного процессора обычный гораздо проще, чем выполнить это преобразование в обратную сторону. Но снятие ограничений по энергопотреблению и тепловыделению отнюдь не означает беспрепятственное масштабирование производительности. Так что насколько оправдает ожидания Haswell в своей десктопной ипостаси - вопрос не столь очевидный.

И здесь уместным будет вспомнить предыдущий цикл «так», процессоры с микроархитектурой Sandy Bridge. Они по сравнению со своими предшественниками поколения Westmere смогли обеспечить лишь примерно 15-процентный прирост производительности в десктопной среде именно потому, что разработчики стали смещать свои акценты на соотношение производительности и энергопотребления. Сейчас же разговор ведется и вовсе на другом языке: главные сильные стороны Haswell, по мнению производителя, - это превосходная экономичность и принципиально новый уровень графического быстродействия. Что же касается вычислительной производительности, то Intel почему-то не акцентирует на ней внимание, что вызывает всякие нехорошие подозрения. Только усугубляющиеся, если посмотреть на предварительные данные о быстродействии десктопных Haswell, которые к настоящему времени уже просочились в прессу.

Ждать выхода процессоров, построенных на микроархитектуре Haswell, осталось совсем недолго. И через несколько дней мы сможем дать развёрнутые ответы на любые вопросы. Однако перед этим уместно будет ознакомиться с теорией - она должна стать хоть и неприятным, но необходимым противоядием от слишком радужных иллюзий, которые вполне могли сформироваться в тягостном ожидании чего-то новенького.

Микроархитектура Haswell: тик или так

Честно говоря, вводная часть чрезмерно сгущает краски. Да, микроархитектура Haswell во многом действительно может считаться высокоэнергоэффективной, и разрабатывалась она в первую очередь с прицелом на мобильные применения. Однако Intel всё-таки не забывает о том, что принятая в компании бизнес-модель предполагает использование единого дизайна в обширной линейке продукции, включающей мобильные, десктопные и серверные компоненты. Это значит, что под модным фасадом низкого энергопотребления скрывается прочный фундамент, позволяющий направить Haswell в разные рыночные ниши. Иными словами, новая микроархитектура не потеряла своей универсальности. Путём манипулирования числом ядер, версиями графического движка, целевым уровнем энергопотребления, размером кеш-памяти и добавлением того или иного набора внешних интерфейсов из Haswell могут получаться разные по своей сути процессоры.


Впрочем, если касаться собственно микроархитектуры, то да, в ней на первом месте стоят нововведения, направленные на оптимизацию тепловых и энергетических режимов. Изменений же, способных поднять производительность, не так много, и на цикл разработки «так» они если и тянут, то с большим трудом. Действительно, когда Intel выпускала Nehalem или Sandy Bridge, перестройка затрагивала не только внутренние блоки вычислительных ядер, но и базовую концепцию процессорного дизайна. Каждый «так» казался чем-то действительно принципиально другим, а от степени новаторства захватывало дух. Но если посмотреть на обобщённую схему Haswell, то её легко перепутать с предшественником - Ivy Bridge.


Все функциональные блоки и принципы их объединения в процессоре остались теми же. Haswell наследует из прошлого все удачные технологии: турборежим, Hyper-Threading, кольцевую шину, но ничего нового к этому багажу не добавляет. Изменения есть лишь в недрах отдельных узлов. Причём инженерное вмешательство в глубинные слои микроархитектуры не слишком значительно. Исполнительный конвейер изменился не слишком сильно, его протяженность составляет те же 14–19 стадий, что и раньше. Фронтальная часть получила лишь отдельные косметические усовершенствования, а все сколько-нибудь значимые перемены касаются лишь механизма исполнения инструкций и поддержки новых наборов команд. Говоря о том, является ли Haswell более производительной микроархитектурой, нежели Ivy Bridge, Intel ссылается на улучшение быстродействия до 20–30 процентов, но следует иметь в виду, что эта оценка включает и выигрыш от использования новых команд AVX2, для которых длительный и непростой этап внедрения ещё впереди.

Экономичность: всё ради неё

Зато шагов, сделанных для улучшения экономичности процессорного дизайна, - хоть отбавляй. Львиная доля усилий разработчиков была потрачена на снижение энергопотребления, и, надо сказать, с точки зрения мобильных систем усилия эти прошли далеко не впустую. Ожидается, что системы на базе Haswell смогут работать от батареи примерно на 50 процентов дольше, чем аналогичные конфигурации на базе Ivy Bridge. В простое выигрыш Haswell по сравнению с процессорами предыдущего поколения составляет порядка 2–3 раз! А в состоянии готовности к работе при сохранении сетевых соединений (connected standby) общее потребление платформы по сравнению с системами на базе Sandy Bridge снизилось примерно в 20 раз.

Столь впечатляющий прогресс своими корнями уходит не в простое совершенствование технологического процесса, который на самом деле имеет лишь эволюционные отличия от 22-нм техпроцесса с трёхмерными транзисторами, используемого для производства Ivy Bridge. И уж тем более дело не в банальном увеличении количества зон процессорного кристалла, которые при отсутствии активности могут независимо друг от друга отключаться от питающей шины. Конечно, всё это вносит определённый вклад в экономичность Haswell, но подобные изменения происходят с каждым новым поколением интеловских процессоров, а качественный скачок случился только сейчас. Так что секрет успеха - в другом.

Вкратце: новые рубежи экономичности были достигнуты благодаря комплексу мероприятий, проведённых не столько с самим процессором, сколько с платформой и инфраструктурой в целом.

Во-первых, важную роль сыграла общая интеграция компонентов платформы: в процессорный кристалл перекочевала значительная часть схемы преобразователя питания, а для ультрамобильных применений был спроектирован специализированный SoC-вариант процессора, содержащий на той же подложке второй кристалл - набор системной логики.


Во-вторых, Intel провела значительную работу с основными производителями контроллеров, указав им на необходимость качественной поддержки состояний сна и глубокого сна. Попутно разработчики рассчитывают, наконец, добиться от производителей дисплейных матриц поддержки функции Panel Self Refresh, позволяющей сохранять изображение на экране без его постоянного обновления со стороны графического ядра.

В-третьих, на руку сыграла и операционная система Windows 8, ядро которой гораздо рачительнее относится к обработке прерываний, по возможности стараясь избегать разрозненных транзакций, пробуждающих процессор или устройства.

И наконец, в-четвёртых, в Haswell появился новый набор ACPI-состояний сна S0ix, похожих по уровню энергопотребления на S3/S4 (когда в пассив отправляются все составляющие платформы за исключением системной памяти), но со временем перевода системы в полностью рабочее состояние на уровне нескольких миллисекунд. Кроме того, добавились также и новые состояния простоя процессора C7 и далее, достигаемые при видимой работоспособности системы, но при которых с основной части CPU может быть полностью снято питающее напряжение.


Однако всё перечисленное в первую очередь касается мобильных платформ и длительности их работы от батареи. В настольных системах большинство из этих нововведений также имеет место, но для конечных пользователей они практически безразличны. Что же их затрагивает самым непосредственным образом, так это появление в процессоре Haswell новых зон, работающих на различных частотах. В Ivy Bridge таких зон было две: вычислительные ядра (вместе с кешем и системным агентом) и графическое ядро. Но это оказалось не лучшим решением с точки зрения экономичности, так как обращения графики к данным в L3-кеше приводили к выходу из энергосберегающих состояний всего процессора. Поэтому в Haswell Uncore-часть, объединяющая системный агент и кеш третьего уровня, получила свою собственную независимую частоту.

И это - отнюдь не позитивное изменение, а яркая иллюстрация тех приоритетов, которых придерживались инженеры Intel при разработке их нового дизайна. Асинхронная работа Uncore и вычислительных ядер приводит к тому, что кеш третьего уровня в Haswell имеет большую латентность, нежели у процессоров предыдущего поколения. Иными словами, ради улучшения экономичности Intel готова даже откатывать сделанные ранее для увеличения производительности шаги.

Но зато все меры, предпринятые Intel для снижения энергопотребления, позволяют компании значительно расширить спектр предлагаемых энергоэффективных процессоров Core. В мобильном сегменте ожидается появление обширной и включающей порядка двух десятков наименований U-серии, с характерным расчётным тепловыделением порядка 15 Вт. Кроме того, нас ожидает и Y-серия с тепловыделением на уровне 6–7 Вт. Эти цифры кажутся особенно впечатляющими, если принять во внимание, что речь идёт о тепловыделении сборки, включающей помимо процессорного ядра и кристалл набора логики.

Для тех, кто хотел побыстрее

Но всё-таки, увлёкшись идеями по переориентации процессоров Core на ультрамобильные ноутбуки-трансформеры и производительные планшеты, Intel не забыла о том, чтобы немного подрихтовать самое сердце своих процессоров. Хотя вычислительные ядра Haswell очень похожи на ядра Ivy Bridge, в них всё-таки можно обнаружить некоторое количество улучшений. Правда, сделаны эти улучшения совсем не из стремления поднять чистую производительность - количество обрабатываемых за такт инструкций. Причина их появления - внедрение в обиход новых инструкций AVX2 и желание увеличить эффективность работы технологии Hyper-Threading, которая должна будет компенсировать невозможность использования четырёх полноценных ядер в низковаттных процессорах. Но, к счастью, у сделанных нововведений есть и положительные побочные эффекты.

Передняя часть исполнительного конвейера Haswell осталась практически нетронутой. Новая микроархитектура, так же как и её предшественники, заточена под обработку четырёх инструкций за такт. Блок выборки инструкций и декодер имеют именно такую ширину. Остался без изменений и кеш инструкций первого уровня объёмом 32 Кбайт, а также введённый ещё в Ivy Bridge кеш для декодированных инструкций на полторы тысячи микроопераций. Преимуществ на этом этапе у Haswell перед прошлым дизайном есть только два. Во-первых, благодаря происходящему при каждом релизе нового процессорного дизайна увеличению размера всех внутренних буферов возросла точность работы блока предсказания переходов. Во-вторых, очередь уже декодированных инструкций получила явную оптимизацию под Hyper-Threading: её деление на два потока стало происходить динамически.


Собственно, отсутствие изменений в базовых алгоритмах выборки и декодирования инструкций и является явным указанием на то, что рассчитывать на увеличение темпа обработки инструкций в Haswell особенно не стоит. Более четырёх (или пяти в случае успешного срабатывания технологии macro-ops fusion) x86-команд эта архитектура переварить не может. И если ранее на цикле разработки «так» Intel делала нововведения, способные увеличить эффективность работы имеющихся декодеров, то теперь этого нет.

Заметные же изменения в микроархитектуре Haswell обнаруживаются, если двигаться по конвейеру глубже. Так, увеличение всех основных буферов коснулось не только предсказания переходов. Немаловажно, что при этом было увеличено окно внеочередного исполнения команд. Этим достигается некоторое улучшение возможностей по параллельной обработке инструкций одного потока, что в конечном итоге позволяет более плотно загружать работой исполнительные устройства (коих в Haswell стало не просто больше, а заметно больше).


Собственно, на фоне всех остальных достаточно жалких улучшений в потрохах микроархитектуры это, пожалуй, - главное достоинство нового микропроцессорного дизайна. Если в Ivy Bridge было предусмотрено всего шесть исполнительных портов, то в Haswell их стало восемь.


Таким образом, в теории Haswell может обрабатывать до восьми микроопераций за такт. Однако надо заметить, что три порта отведены на операции работы с памятью, то есть предназначаются для обслуживания вспомогательных микроопераций, возникающих при разборке x86-инструкций.

Поэтому первостепенное значение имеет появление отдельного порта для целочисленных операций и обработки ветвлений. Очевидно, предполагается, что со временем число используемых в программах 256-битных инструкций будет расти, и, чтобы они не блокировали работу самого обычного кода, его исполнение теперь может быть выделено на независимый порт. Такое «развязывание» портов по типам операций должно дать особенно сильный положительный эффект при одновременном исполнении одним ядром двух разнородных потоков с участием технологии Hyper-Threading. То есть мы вновь сталкиваемся с ростом её эффективности в Haswell.

Также в распоряжении процессора теперь оказалось суммарно четыре порта, способных работать с целочисленными инструкциями. А это значит, что самый ординарный целочисленный код может проходить через этап исполнения с тем же темпом, что и через декодер.

Впрочем, судя по общему подходу к проектированию новой микроархитектуры, Intel задумывалась о росте количества обрабатываемых за такт инструкций в последнюю очередь. Что же наверняка волновало разработчиков гораздо сильнее, так это работа с новыми командами из набора AVX2. В это множество инструкций входят 256-битные SIMD-команды для обработки целых чисел, разреженные операции с памятью и различные перестановки и сдвиги компонентов векторов. Но львиная и самая важная доля нового набора команд - принципиально новые вещественночисленные FMA-инструкции (Fused Multiply-Add), которые фактически одновременно включают в себя пару операций - умножение и сложение. Естественно, их выполнение старыми средствами вызвало бы значительные простои процессора, поэтому для них теперь сделано два отдельных порта и выделенные исполнительные устройства. В результате Haswell может выполнять по две сдвоенные FMA-инструкции за такт.


Таким образом, теоретически Haswell на AVX2-коде может показывать вдвое более высокую пиковую вещественночисленную производительность, нежели процессоры прошлых поколений. Хотя, на самом деле, если сопоставить скорость выполнения одной FMA-инструкции и раздельных инструкций умножения и сложения, то реальная величина ускорения окажется на уровне 60 процентов, что, конечно же, тоже очень неплохо.

В какой-то мере внедрение быстрого исполнения FMA-команд является ответом Intel на растущую популярность вычислений на графических процессорах. Набор AVX2 и имеющиеся аппаратные средства для его обработки делают Haswell отличной числодробилкой, а сами эти инструкции прекрасно вписываются в популярные вычислительные алгоритмы, используемые как в научных областях, так и при обработке различного мультимедийного контента.

Следовательно, процессоры Haswell всё-таки могут быть существенно производительнее своих предшественников. Но не за счёт более быстрого исполнения старого кода, а за счёт предоставления инструментов для лучшей реализации старых алгоритмов через новую систему инструкций. Это, естественно, требует определённых усилий от программистского сообщества, но зато не приводит к дополнительным затратам процессором электроэнергии, что отлично вписывается в ту генеральную линию, которой теперь придерживается Intel.

Желание сделать работу процессора с AVX2-инструкциями максимально гладкой заставило разработчиков Haswell задуматься об увеличении скорости работы кеш-памяти. Новые команды предполагают вдвое более быструю, чем ранее, обработку данных. Поэтому для поддержания баланса в новой микроархитектуре симметрично увеличена пропускная способность кеш-памяти первого и второго уровней. Подчеркнём, речь идёт именно о расширении полосы пропускания L1- и L2-кеша, латентность же кеш-памяти остаётся на том же уровне, что и раньше.


В результате кеш первого уровня стал способен отрабатывать два 32-байтных чтения и одну 32-байтную запись за такт. Кеш же второго уровня может принимать и отдавать за такт по 64 байта данных. И в том и в другом случае имеет место двукратное увеличение пропускной способности по сравнению с процессорными микроархитектурами прошлых поколений. Плюс к этому в Haswell, наконец, удалось ликвидировать все добавочные задержки, связанные с обращениями к невыровненным данным в L1-кеше.

К сожалению, при этом улучшения обошли кеш третьего уровня, который теперь работает на собственной частоте асинхронно с вычислительными ядрами. И хотя его частота близка к частоте основной части процессора, асинхронность вызывает увеличение латентности. Никакой же компенсации в виде роста пропускной способности не последовало. Внутрипроцессорная кольцевая шина в Haswell перенесена из Ivy Bridge без каких-либо изменений, так что вытянуть из L3-кеша более 32 байт данных за такт невозможно при всём желании.

Резюмируя, отметим, что хотя Haswell по микроархитектуре вычислительных ядер и похож на Ivy Bridge, улучшения, способные увеличить его скорость работы на обычном коде, всё-таки есть. Фактически между всеми этапами конвейера проведён серьёзный ребаланс, приведший к тому, что, хотя скорость выборки и декодирования инструкций и осталась практически той же, исполнение этих инструкций теперь может происходить ощутимо быстрее и с большей степенью параллелизма. Но отразится ли это на реальной производительности Haswell, зависит от того, действительно ли именно исполнение, а не декодирование было бутылочным горлышком в прошлых версиях микроархитектуры Core.

Интегрированная графика: выходим на уровень GeForce GT 650M

Тем не менее, для того, чтобы ощутить возросшую мощь Haswell с 100-процентной вероятностью, совершенно не обязательно переписывать под AVX2 имеющиеся программы. Дело в том, что в этом процессоре есть важная часть, занимающая примерно 30 процентов площади кристалла, над которой инженеры Intel поработали очень усердно. Это - интегрированное графическое ядро. Учитывая первостепенность мобильных применений своих процессоров, Intel в последние несколько лет проводит последовательные улучшения встраиваемой в них графики и стремится к тому, чтобы её собственный ускоритель смотрелся не хуже решений других разработчиков, включая и тех, которые графическими решениями занимаются целенаправленно. В Ivy Bridge мы уже видели почти двукратный рост графической производительности по сравнению с процессорами предыдущего поколения, произошедший одновременно с внедрением поддержки всех современных версий программных интерфейсов. Микроархитектура Haswell обещает поднять скорость работы графического ядра ещё примерно вдвое.


Планы у разработчиков, как видим, были грандиозные, но при этом, как и в вычислительных ядрах, в данном случае Intel смогла обойтись без внесения глубоких архитектурных изменений. Структура графического ядра осталось старой, а рост производительности обеспечивается в чистом виде экстенсивными методами. Новую же архитектуру видеоускорителя Intel обещает лишь в 2014 году - в следующем поколении процессоров с кодовым именем Broadwell. В результате, как и вычислительные ядра, графическое ядро Haswell навевает мысли о том, что «так» и из нового процессора получился не слишком правдоподобный. Впрочем, это не умаляет достигнутого роста быстродействия, который, безусловно, заслуживает того, чтобы познакомиться с его источниками несколько подробнее. Тем более что в новом поколении Intel HD Graphics место нашли весьма занимательные инженерные решения.


Если не считать отдельных оптимизаций графического конвейера, направленных на перенесение части нагрузки с драйвера на аппаратные блоки и на увеличение производительности большинства специализированных функциональных блоков, выполняющих в конвейере 3D-рендеринга подготовительные операции, новое графическое ядро сильно похоже на ядро из процессоров предыдущего поколения с добавленной поддержкой DirectX 11.1. Главное же преимущество нового дизайна - наличие существенно большего количества универсальных исполнительных устройств. Если максимальная версия графики Ivy Bridge располагала 16 исполнительными устройствами (включающими по 4 ALU каждое), то количество исполнительных устройств в графическом ядре Haswell может доходить до 40 штук.

Однако при этом Intel решила провести более явную сегментацию и на основе единого дизайна сделать несколько вариантов графики: GT1, GT2, GT3 и GT3e. Базовая версия - это GT2 с 20 исполнительными устройствами. Она предназначается для большинства десктопных моделей процессоров и предлагает на 4 устройства больше, чем старшая графика процессоров поколения Ivy Bridge. Однако её урезанная версия, GT1, имеет лишь 6 исполнительных устройств и мало отличается от графики, уже присутствующей в существующих процессорах Pentium и Celeron. Максимальный же вариант, GT3, который располагает 40 исполнительными устройствами, представляет собой GT2 с удвоенным исполнительным кластером. Такая прокачанная версия видеоускорителя нацеливается на большинство мобильных вариантов Haswell, включая в первую очередь процессоры для ультрабуков. Двух с половиной кратное увеличение количества исполнительных устройств и должно, по замыслу разработчиков, обеспечить двукратный рост производительности графики. Однако такая производительная версия видеодвижка, GT3, в настольные компьютеры не попадёт. А это значит, что у десктопной интегрированной графики Intel прирост производительности будет не кратный, а лишь примерно 30-процентный.


Любопытно, что на самом деле полупроводниковый кристалл Haswell будет иметь на одно или два исполнительных устройства больше, чем предусмотрено дизайном. Дополнительные устройства играют роль запасных, они нужны для подмены нерабочих блоков и для снижения количества бракованных процессоров.

Увеличение мощности исполнительного кластера графического ядра заставило разработчиков дизайна задуматься и о том, чтобы узким местом не стал этап наложения текстур. Поэтому скорость работы текстурного блока в Haswell была симметрично увеличена. Intel обещает четырёхкратный рост скорости текстурирования по сравнению с графикой Ivy Bridge, и это - вполне достаточное усиление, если учесть рост мощности остальной части движка.

Впрочем, несмотря на все принятые меры, даже производительность GT3 показалась Intel недостаточной, чтобы привлечь на сторону собственных интегрированных ядер самых требовательных пользователей. Поэтому для производительных игровых мобильных систем Intel создала специализированную заряженную модификацию GT3e. В процессорах с таким ядром, которые будут образовывать отдельную мобильную H-серию, встроенное графическое ядро GT3 будет дополняться быстрой eDRAM-памятью объёмом 128 Мбайт и 512-битной шиной. Идея состоит в том, что существенные ограничения на скорость встраиваемых видеоядер накладывает недостаточная пропускная способность системной памяти, которая в таких случаях играет также и роль видеопамяти. eDRAM же будет устанавливаться на одну подложку с процессорным ядром и выполнять роль L4-кеша, обеспечивая пропускную способность порядка 64 Гбайт/с. Однако никакого специализированного интерфейса между графическим ядром и eDRAM не предусматривается, так что такой L4-кеш будет буферизировать все обращения в память, а не только инициированные графическим ядром. Тем не менее Intel ожидает, что именно эта добавка сможет вывести Haswell по графической производительности на один уровень с NVIDIA GeForce GT 650M.


Но следует понимать, что добавление к процессорному кристаллу дополнительного кристалла eDRAM заметно увеличивает энергопотребление и стоимость процессора, поэтому CPU с GT3e предполагается использовать исключительно в высокопроизводительных геймерских ноутбуках, где речь об экономичности, компактности и бюджетности не идёт. А значит, компания AMD со своими APU поколения Richland пока что не будет ощущать особого давления со стороны конкурента. И особенно это касается десктопной среды: предлагать широкий ассортимент процессоров с производительными графическими ядрами для этого рыночного сегмента Intel не считает необходимым.

Впрочем, даже пользователи настольных систем смогут оценить прочие преимущества графического ядра нового поколения, например расширенные возможности по подключению мониторов. В Haswell поддерживается работа до трёх независимых дисплеев, причем все три подключения могут быть цифровыми. Благодаря же внедрению совместимости с последними версиями интерфейсов HDMI и DisplayPort, максимальные поддерживаемые разрешения достигли величин 4Kx2K.

Без улучшений не осталось и одно из любимых детищ Intel - встроенный в графическое ядро аппаратный видеокодер Quick Sync. Разработчики рассматривают его как один из путей снижения энергопотребления процессоров, так как Quick Sync позволяет высвобождать вычислительные ядра от энергоёмких и весьма распространённых задач кодирования и декодирования видео, перенося их выполнение на специализированный и экономичный узел. Поэтому в каждой новой версии процессорного дизайна производительность Quick Sync поднимается, а число поддерживаемых этой технологией форматов растёт. Так, Haswell в дополнение к уже освоенным форматам будет способен на аппаратном уровне работать с SVC (Scalable Video Coding - производная AVC H.264), декодировать MJPEG (motion JPEG) и кодировать видео в формате MPEG2. При этом будет обеспечена полноценная совместимость при кодировании и декодировании с видео в разрешении 4K (4096x2304, 4096x2160 и 3840x2160), которое в настоящее время приобретает всё большую популярность.

Возросла и чистая производительность кодера Quick Sync. Причём теперь ему присуща не только высокая пропускная способность, но и низкая латентность, открывающая аппаратному кодированию путь в телеконференции. Скорость же кодирования в Haswell заметно выше, чем у Ivy Bridge, однако в разных версиях графического ядра она различается, причём в разы. Зато качество получаемого при аппаратном кодировании видео улучшилось в любых модификациях графики. Обновлённая технология Quick Sync должна давать лучшее качество кодированного изображения, чем Ivy Bridge, даже при одинаковом битрейте.

Заключение

Очевидно, новая микроархитектура Haswell может вселять как надежды на светлое будущее, так и разочарование уровнем достигнутого прогресса. Всё зависит от того, на что вы рассчитываете. К сожалению, интеловская схема «тик-так» незримо подталкивает к завышению ожиданий, ведь Haswell относится к циклу разработки «так», то есть должен восприниматься как новое поколение микроархитектуры. Но принципиальных и революционных улучшений в нём сделано не так много. Речь идёт не о кардинальной переработке процессорного дизайна, а лишь о некотором наборе улучшений и усовершенствований. Конечно, улучшений этих немало, и можно даже говорить о переходе количества в качество. Но, как бы то ни было, Intel фактически форсировала имеющуюся микроархитектуру Ivy Bridge, а не предложила что-то принципиально новое. Причём основной упор при выполненной переработке делался не на поиски путей увеличения вычислительной производительности, а на улучшение энергоэффективности и развитие графических возможностей.

С точки же зрения традиционно процессорной парадигмы микроархитектура Haswell предлагает лишь поддержку нового набора инструкций AVX2, лучший параллелизм на уровне исполнения инструкций и возросшую пропускную способность кеш-памяти первого и второго уровней. Достаточно ли таких изменений для того, чтобы соответствовать ожиданиям приверженцев классических персональных компьютеров? Вряд ли. Поэтому большинство энтузиастов, увидев лишь незначительный прирост вычислительного быстродействия, лежащий предположительно в рамках 5-15 процентов, скорее всего, новыми процессорами будут недовольны. И это означает, что никакого всплеска интереса к привычным десктопам и ноутбукам не предвидится и с выходом нового семейства процессоров.

Но Intel, несмотря на всё это, может гордиться выполненной работой. Поставленную перед собой задачу компания решила. Дизайн Haswell получился настолько энергоэффективным и сбалансированным, что эти процессоры, вне всяких сомнений, смогут занять достойное место в лакомом для производителя подвиде мобильных устройств - производительных планшетах и ноутбуках-трансформерах. Намечающийся на этом рынке бум компания теперь точно не прозевает: в ответ на поползновения когорты приверженцев архитектуры ARM, а также на новые APU компании AMD у Intel теперь имеется хорошая домашняя заготовка. Ведь микроархитектура Haswell позволяет создавать модификации дизайна, которые обладают показателями энергопотребления, выражающимися в однозначных числах, и представляют при этом SoC-сборки, включающие не только процессор, но и набор системной логики.

На этом мы пока не ставим финальную точку. Данный материал лишь открывает цикл статей о процессорах с новой микроархитектурой. В самое ближайшее время мы сможем более подробно и с реальными процессорами в руках познакомиться как с десктопными, так и с мобильными воплощениями микроархитектуры Haswell. И тогда , быть может, наши выводы, сделанные лишь на основе знакомства с документацией, несколько изменятся. И в это действительно хочется верить…

Типы процессоров intel многочисленны. Haswell – название четвертого поколения оборудования, в котором применялась инновационная архитектура.

Специально для них разработано семейство новых чипсетов восьмой серии. Работа с SSD оптимизирована. Релиз архитектуры состоялся в начале июня 2013 года.

Обзор Haswell

С 2013 – го года разработано множество моделей процессоров. Автономный процессор позиционировался разработчиками для использования в ноутбуках, ультрабуках и планшетах, благодаря низкому энергопотреблению. Производительность повысится, что позволяет разработчикам представлять Haswell как лучшие процессоры intel для мобильных устройств в настоящий момент. Двухядерные процессоры Core i3 haswell представлены в трех разновидностях:

  1. i3-4340;
  2. i3-4330;
  3. i3-4130.

Различаются тактовой частотой, которая для трех моделей составляет соответственно 3,6, 3,5, 3,4 ГГц. Новое графическое ядро для первых двух моделей представлено HD Graphics 4600, а для третьей — HD Graphics 4400. Частота это ядра у всех 1150 МГц. LЗ – кэш 4, 4 и 3 Мбайта соответственно. Цена отличается несильно – для первого варианта – $160, для второго – $150 и для третьего $130.

Четырехядерные i5 haswell оснащены ядром графики HD Graphics 4600. Тактовая частота 3,2 ГГц, при турбоускорении – 3,6. Кэш объемом 6 Мбайт. Теплоотделение низкое, так что и при активном использовании не требуется дополнительный куллер.

Но процессор i7 превосходит i3 или i5. Представлен рядом i7-4770K, i7-4770, i7-4770S, i7-4770T и i7-4765T. Первые два работают на четырехядерном процессоре в 8 потоков, тогда как остальные – в четыре.

Тактовая частота ниже всего у последней модели и равна 2 ГГц, самая высокая у первой – 3,5 ГГц. Кэш 8 Мб

Особенности Haswell

Haswell – название новой архитектуры процессоров, процессоры, основанные на ней, называются также. Вычислительное ядро устройства претерпело изменения по сравнению с предыдущей версией. Предпроцессор почти не изменен. Декодер ядра четырехканальный, а так как средняя длина команды составляет 4 байта, может одновременно обрабатывать до 16 – ти байт. Состоит из четырех простых декодеров и одного сложного. Инструкции декодируются по технологиям Macro – Fusion и Micro – Fusion.

8-миканальный кэш декодированных операций хранит 1500 микроопераций в 4 байта. Каждый из 8-ми банков по 32 кэшстроки, в которые входит по 6 микроопераций в каждую. Смысл такого банка в том, чтобы не выполнять повторное декодирование, а вытаскивать уже декодированную операцию непосредственно из кэша.

Изменены исполнительные блоки в ядре. Количество портов увеличено до 8. Теперь за один такт выполняется до 8-ми микроопераций. Введен новый набор инструкций.

Тесты устройства на производительность проводились на основе Windows и Андроид. Тестирование intel core i7 – 4770 проводилось базовыми процессами и приложениями, а за показатель бралось время выполнения заданной операции. В результате теста на неигровых приложениях индексы процессоров intel Haswell оказались выше, чем в предыдущих моделях.

Наибольший прирост по показателю в приложениях Photoshop, Adobe Premier Pro и др

С помощью 3DMark Professional проводился тест на работу игровых приложений. По результатам видно, что есть прогресс в работе графической подсистемы. Игра без применения дискретной графической видеокарты невозможна. Встроенная графика процессора не годится.

Преимущества процессора Haswell

Haswell – поколение Intel Core, имеющее довольно много противников. Они находят в нем недостатки, такие как завышенная цена или необходимость слишком часто обновлять платформу. Однако у данного оборудования есть ряд плюсов. Это и высокие эффективность и производительность, и функциональная платформа и др.

  • Главный же плюс, которым обладает процессор – интегрированное ядро графики. Оно стало конкурентоспособным. Появилась возможность поддержки нескольких мониторов и значительный прирост производительности;
  • Устройство обладает повышенной эффективностью по энергопотреблению. По сравнению с прошлыми версиями удалось снизить его на 5 Ватт в режиме бездействия. Это не столь большая разница для настольного ПК, но значительная, если Вы выбираете ноутбук или ультрабук. Потребление электроэнергии под нагрузкой низкое;
  • Производительность повысилась на 5 – 10 % в сравнении с прошлыми поколениями. Отличается в зависимости от условий теста. В отдельных случаях может быть выше или ниже. Разница не столь значительная, чтобы проводить апгрейд существующей системы предыдущего поколения, однако значительная, если Вы выбираете процессор haswell взамен значительно устаревшего;
  • Система разгона процессора через базовую частоту стала более гибкой. Тем самым разработчики ответили на претензии пользователей предыдущих версий устройств.

Процессоры intel pentium haswell разрабатываются, в большей степени, для применения в ноутбуках. Мощное оборудование для настольных ПК пока не выпускается, а в ноутбуках же не удается достичь высочайших тактовых частот, огромных кэшей и использования полноценных 8 – ми ядер. Таким образом, любителям стационарных ПК придется подождать иных разработок.