Комплектующие        09.03.2022   

Функция: область определения и область значений функций. Натуральный логарифм и число е Задания числа e

вероятность (probability) - число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 - это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.

Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.

эмпирическая вероятность - вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.

Вероятность очень редких событий нельзя посчитать эмпирически.

субъективная вероятность - вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.

априорная вероятность -

Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).

Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).

Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P

Несогласованная вероятноть - например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.

Безусловная вероятность - это ответ на вопрос «Какова вероятность того, что событие произойдет?»

Условная вероятность - это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).

Совместная вероятность - вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).

P(A|B) = P(AB)/P(B) (1)

P(AB) = P(A|B)*P(B)

Правило суммирования вероятностей:

Вероятность того, что случится либо событие A либо событие B -

P (A or B) = P(A) + P(B) - P(AB) (2)

Если события A и B взаимоисключающие, то

P (A or B) = P(A) + P(B)

Независимые события - события A и B независимы если

P(A|B) = P(A), P(B|A) = P(B)

То есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты - пример такого события, - результат каждого следующего броска не зависит от результата предыдущего.

Зависимые события - это такие события, когда вероятность появления одного зависит от вероятности появления другого.

Правило умножения вероятностей независимых событий:
Если события A и B независимы, то

P(AB) = P(A) * P(B) (3)

Правило полной вероятности:

P(A) = P(AS) + P(AS") = P(A|S")P(S) + P (A|S")P(S") (4)

S и S" - взаимоисключающие события

математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).

Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:

Дисперсия случайной величины - матожидание квадратных отклонений случайной величины от ее матожидания:

s 2 = E{ 2 } (6)

Условное матожидание (conditional expected value) - матожидание случайной величины X при условии того, что событие S уже произошло.

e - математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. e = 2,718281828459045… Иногда число e называют числом Эйлера или неперовым числом . Играет важную роль в дифференциальном и интегральном исчислении.

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Джона Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 г.). Однако это название не совсем корректно, т. к. у него логарифм числа x был равен .

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 г. Негласно, потому что там содержится только таблица натуральных логарифмов, сама же константа не определена. Предполагается, что автором таблицы был английский математик Вильям Отред. Саму же константу впервые вывел швейцарский математик Якоб Бернулли при попытке вычислить значение следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Готфрида Лейбница Кристиану Гюйгенсу, 1690 и 1691 гг. Букву e начал использовать Леонард Эйлер в 1727 г., а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 г. Соответственно, e иногда называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ), поскольку он был очень скромным человеком и всегда старался подчеркнуть значимость труда других людей.

Способы запоминания

Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 , 90 и 45 градусов).

В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

В ещё одном небезынтересном способе предлагается запомнить число e с точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки): .

В четвёртом способе предлагается запомнить e как .

Грубое (с точностью до 0,001), но красивое приближение полагает e равным . Совсем грубое (с точностью 0,01) приближение даётся выражением .

«Правило Боинга»: даёт неплохую точность 0,0005.

«Стих»: Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли.

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 02123 40784 98193 34321 06817 01210 05627 88023 51920

Описывать е как «константу, приблизительно равную 2,71828…» - это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи - это соотношение длины окружности к диаметру, одинаковое для всех окружностей . Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Понятие экспоненциального роста

Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:

  • Бактерии делятся и «удваиваются» в количестве каждые 24 часа
  • Мы получаем вдвое больше лапшинок, если разламываем их пополам
  • Ваши деньги каждый год увеличиваются вдвое, если вы получаете 100% прибыли (везунчик!)

И выглядит это примерно так:

Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.

Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:

рост = 2 x

Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:

рост = (1+100%) x

Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?

Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:

рост = (1+прирост ) x

Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.

Приглядимся поближе

Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.

Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:

Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.

Эта информация как-то изменит наше уравнение?

Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.

Хотя эта связь на первый взгляд эта связь кажется совсем неочевидной (одно дело, казалось бы, научная математика, и совсем другое - экономика и финансы), но стоит изучить историю "открытия" этого числа, всё становится очевидным. В самом деле, как бы ни делили науки на разные вроде как несвязанные меж собой ветви, но общая парадигма всё равно будет единой (в частности, обществу потребления - "потребительская" же и математика).

Для начала определение. e - основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».

Поскольку функция экспоненты e^x интегрируется и дифференцируется «в саму себя», логарифмы именно по основанию e принимаются как натуральные (хотя само название "натуральности" должно бы быть под большим сомнением, ведь вся математика по сути устроена на искусственных придуманных, оторванных от природы выдуманных началах, а вовсе не на естественных).

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как Непер не использовал непосредственно само число.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из КИНЕМАТИЧЕСКИХ соображений, сама же константа не присутствует.

Саму же константу впервые вычислил швейцарский математик Бернулли (по официальной версии в 1690 году) в ходе решения задачи о предельной величине ПРОЦЕНТНОГО ДОХОДА. Он обнаружил, что если исходная сумма $1 (валюта совершенно неважна) и начисляется 100 % годовых один раз в конце года, то итоговая сумма будет $2. Но если те же самые проценты начислять два раза в год, то $1 умножается на 1.5 дважды, получая $1.00×1.5² = $2.25. Начисления процентов раз в квартал приводят к $1.00×1.254 = $2.44140625, и так далее. Бернулли показал, что если частоту начисления процентов БЕСКОНЕЧНО УВЕЛИЧИВАТЬ, то процентный доход в случае сложного процента имеет предел - и этот предел равен 2,71828…

$1.00×(1+1/12)12 = $2.613035…

$1.00×(1+1/365)365 = $2.714568… - в пределе число е

Таким образом, число e на самом деле исторически означает максимально возможную ГОДОВУЮ ПРИБЫЛЬ при 100 % годовых и максимальной частоте капитализации процентов. И при чём здесь законы Вселенной ? Число е - один из важных кирпичиков в фундаменте денежной экономики ссудного процента в обществе потребления, под которую с самого начала, даже на мыслительном философском уровне, подгонялась и затачивалась несколько столетий назад вся используемая сегодня математика.

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы.

Букву e начал использовать Эйлер в 1727 году, впервые она встречается в письме Эйлера немецкому математику Гольдбаху от 25 ноября 1731 года, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически», 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Также примечательно, что буква e является первой в фамилии Эйлер (Euler).

Но в любом случае, говорить о том, что число е каким-то образом относится к универсальным законам Вселенной и природы, просто абсурдно. Это число самой концепцией изначально привязывалось к кредитно-финансовой денежной системе, и в частности через это число (но не только) идеология кредитно-финансовой системы косвенно влияла и на формирование и развитие всей остальной математики, а через неё и всех остальных наук (ведь все без исключения науки что-то считают, используя при этом правила и подходы математики). Число e играет важную роль в дифференциальном и интегральном исчислении, которое через неё фактически тоже связано с идеологией и философией максимизации процентного дохода (можно даже сказать, связано подсознательно). Как связан и натуральный логарифм. Установление е в качестве константы (вместе со всем прочим) привело к образованию неявных связей в мышлении, в соответствии с которыми вся существующая математика просто не может существовать в отрыве от денежной системы! И в этом свете совершенно неудивительно, что древние славяне (да и не только они) прекрасно обходились без констант, иррациональных и трансцендентных чисел да и без чисел и цифр вообще (в качестве чисел в древности выступали буквы), другая логика, другое мышление в системе в отсутствии денег (а значит и всего, что с ними связано) делает всё вышеперечисленное попросту ненужным.

ОПРЕДЕЛЕНИЕ

Число — иррациональная и трансцендентная математическая константа, называемая числом Эйлера или числом Непера , являющаяся основанием натурального логарифма.

Негласно константа присутствует в работе «Описание удивительной таблицы логарифмов» шотландского математика Джона Непера (1550-1617) (а точнее в приложении к переводу этой работы, который был опубликован в 1618 г.). Первые упоминания про эту константу имеются в письмах саксонского философа, логика, математика, механика, физика, юриста, историка, дипломата, изобретателя и языковеда Готфрида Вильгельма Лейбница (1646-1716) к нидерландскому механику, физику, математику, астроному и изобретателю Христиану Гюйнгенсу ван Зёйлихему (1629-1695) в 1690-91 гг. Там она обозначалась буквой . Традиционное обозначение в 1727 г. начал использовать швейцарский, немецкий, российский математик и механик Леонард Эйлер (1707-1783); впервые он употребил ее в своем письме к немецкому математику Кристиану Гольдбаху (1690-1764) в 1731 г. Первой публикацией с этой буквой была работа Л. Эйлера «Механика, или Наука о движении, изложенная аналитически» (1736). Сама же константа впервые была вычислена швейцарским математиком Якобом Бернулли (1655-1705) в ходе решения задачи о предельной величине процентного дохода:

Число играет большую роль в различных разделах математики, а особенно в дифференциальном и интегральном исчислении. Трансцендентность числа Эйлера была доказана французским математиком Шарлем Эрмитом (1822-1901) только в 1873 г.

Задания числа e

1) Через предел: